Proof of Theorem merco1lem12
Step | Hyp | Ref
| Expression |
1 | | merco1lem3 1724 |
. . . . 5
⊢ ((((𝜑 → 𝜏) → (((𝜒 → (𝜑 → 𝜏)) → 𝜑) → ⊥)) → (𝜒 → ⊥)) → (𝜒 → (𝜑 → 𝜏))) |
2 | | merco1 1719 |
. . . . 5
⊢
(((((𝜑 → 𝜏) → (((𝜒 → (𝜑 → 𝜏)) → 𝜑) → ⊥)) → (𝜒 → ⊥)) → (𝜒 → (𝜑 → 𝜏))) → (((𝜒 → (𝜑 → 𝜏)) → 𝜑) → (((𝜒 → (𝜑 → 𝜏)) → 𝜑) → 𝜑))) |
3 | 1, 2 | ax-mp 5 |
. . . 4
⊢ (((𝜒 → (𝜑 → 𝜏)) → 𝜑) → (((𝜒 → (𝜑 → 𝜏)) → 𝜑) → 𝜑)) |
4 | | merco1lem9 1731 |
. . . 4
⊢ ((((𝜒 → (𝜑 → 𝜏)) → 𝜑) → (((𝜒 → (𝜑 → 𝜏)) → 𝜑) → 𝜑)) → (((𝜒 → (𝜑 → 𝜏)) → 𝜑) → 𝜑)) |
5 | 3, 4 | ax-mp 5 |
. . 3
⊢ (((𝜒 → (𝜑 → 𝜏)) → 𝜑) → 𝜑) |
6 | | merco1lem11 1733 |
. . 3
⊢ ((((𝜒 → (𝜑 → 𝜏)) → 𝜑) → 𝜑) → ((((𝜓 → 𝜑) → (((𝜒 → (𝜑 → 𝜏)) → 𝜑) → ⊥)) → ⊥) →
𝜑)) |
7 | 5, 6 | ax-mp 5 |
. 2
⊢ ((((𝜓 → 𝜑) → (((𝜒 → (𝜑 → 𝜏)) → 𝜑) → ⊥)) → ⊥) →
𝜑) |
8 | | merco1 1719 |
. 2
⊢
(((((𝜓 → 𝜑) → (((𝜒 → (𝜑 → 𝜏)) → 𝜑) → ⊥)) → ⊥) →
𝜑) → ((𝜑 → 𝜓) → (((𝜒 → (𝜑 → 𝜏)) → 𝜑) → 𝜓))) |
9 | 7, 8 | ax-mp 5 |
1
⊢ ((𝜑 → 𝜓) → (((𝜒 → (𝜑 → 𝜏)) → 𝜑) → 𝜓)) |