Proof of Theorem merco1lem12
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | merco1lem3 1717 | . . . . 5
⊢ ((((𝜑 → 𝜏) → (((𝜒 → (𝜑 → 𝜏)) → 𝜑) → ⊥)) → (𝜒 → ⊥)) → (𝜒 → (𝜑 → 𝜏))) | 
| 2 |  | merco1 1712 | . . . . 5
⊢
(((((𝜑 → 𝜏) → (((𝜒 → (𝜑 → 𝜏)) → 𝜑) → ⊥)) → (𝜒 → ⊥)) → (𝜒 → (𝜑 → 𝜏))) → (((𝜒 → (𝜑 → 𝜏)) → 𝜑) → (((𝜒 → (𝜑 → 𝜏)) → 𝜑) → 𝜑))) | 
| 3 | 1, 2 | ax-mp 5 | . . . 4
⊢ (((𝜒 → (𝜑 → 𝜏)) → 𝜑) → (((𝜒 → (𝜑 → 𝜏)) → 𝜑) → 𝜑)) | 
| 4 |  | merco1lem9 1724 | . . . 4
⊢ ((((𝜒 → (𝜑 → 𝜏)) → 𝜑) → (((𝜒 → (𝜑 → 𝜏)) → 𝜑) → 𝜑)) → (((𝜒 → (𝜑 → 𝜏)) → 𝜑) → 𝜑)) | 
| 5 | 3, 4 | ax-mp 5 | . . 3
⊢ (((𝜒 → (𝜑 → 𝜏)) → 𝜑) → 𝜑) | 
| 6 |  | merco1lem11 1726 | . . 3
⊢ ((((𝜒 → (𝜑 → 𝜏)) → 𝜑) → 𝜑) → ((((𝜓 → 𝜑) → (((𝜒 → (𝜑 → 𝜏)) → 𝜑) → ⊥)) → ⊥) →
𝜑)) | 
| 7 | 5, 6 | ax-mp 5 | . 2
⊢ ((((𝜓 → 𝜑) → (((𝜒 → (𝜑 → 𝜏)) → 𝜑) → ⊥)) → ⊥) →
𝜑) | 
| 8 |  | merco1 1712 | . 2
⊢
(((((𝜓 → 𝜑) → (((𝜒 → (𝜑 → 𝜏)) → 𝜑) → ⊥)) → ⊥) →
𝜑) → ((𝜑 → 𝜓) → (((𝜒 → (𝜑 → 𝜏)) → 𝜑) → 𝜓))) | 
| 9 | 7, 8 | ax-mp 5 | 1
⊢ ((𝜑 → 𝜓) → (((𝜒 → (𝜑 → 𝜏)) → 𝜑) → 𝜓)) |