Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > merco1lem16 | Structured version Visualization version GIF version |
Description: Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 1719. (Contributed by Anthony Hart, 18-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
merco1lem16 | ⊢ (((𝜑 → (𝜓 → 𝜒)) → 𝜏) → ((𝜑 → 𝜒) → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | merco1lem15 1737 | . . 3 ⊢ ((𝜑 → 𝜒) → (𝜑 → (𝜓 → 𝜒))) | |
2 | merco1lem11 1733 | . . 3 ⊢ (((𝜑 → 𝜒) → (𝜑 → (𝜓 → 𝜒))) → ((((𝜏 → 𝜑) → ((𝜑 → 𝜒) → ⊥)) → ⊥) → (𝜑 → (𝜓 → 𝜒)))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ((((𝜏 → 𝜑) → ((𝜑 → 𝜒) → ⊥)) → ⊥) → (𝜑 → (𝜓 → 𝜒))) |
4 | merco1 1719 | . 2 ⊢ (((((𝜏 → 𝜑) → ((𝜑 → 𝜒) → ⊥)) → ⊥) → (𝜑 → (𝜓 → 𝜒))) → (((𝜑 → (𝜓 → 𝜒)) → 𝜏) → ((𝜑 → 𝜒) → 𝜏))) | |
5 | 3, 4 | ax-mp 5 | 1 ⊢ (((𝜑 → (𝜓 → 𝜒)) → 𝜏) → ((𝜑 → 𝜒) → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊥wfal 1553 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-tru 1544 df-fal 1554 |
This theorem is referenced by: merco1lem17 1739 retbwax1 1741 |
Copyright terms: Public domain | W3C validator |