MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  merco1lem7 Structured version   Visualization version   GIF version

Theorem merco1lem7 1730
Description: Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 1721. (Contributed by Anthony Hart, 17-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
merco1lem7 (𝜑 → (((𝜓𝜒) → 𝜓) → 𝜓))

Proof of Theorem merco1lem7
StepHypRef Expression
1 merco1lem5 1728 . . 3 ((((𝜓 → ⊥) → (((𝜓𝜒) → 𝜓) → ⊥)) → 𝜒) → (𝜓𝜒))
2 merco1 1721 . . 3 (((((𝜓 → ⊥) → (((𝜓𝜒) → 𝜓) → ⊥)) → 𝜒) → (𝜓𝜒)) → (((𝜓𝜒) → 𝜓) → (((𝜓𝜒) → 𝜓) → 𝜓)))
31, 2ax-mp 5 . 2 (((𝜓𝜒) → 𝜓) → (((𝜓𝜒) → 𝜓) → 𝜓))
4 merco1lem6 1729 . 2 ((((𝜓𝜒) → 𝜓) → (((𝜓𝜒) → 𝜓) → 𝜓)) → (𝜑 → (((𝜓𝜒) → 𝜓) → 𝜓)))
53, 4ax-mp 5 1 (𝜑 → (((𝜓𝜒) → 𝜓) → 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wfal 1555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-tru 1546  df-fal 1556
This theorem is referenced by:  retbwax3  1731  merco1lem17  1741
  Copyright terms: Public domain W3C validator