Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > merco1lem5 | Structured version Visualization version GIF version |
Description: Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 1721. (Contributed by Anthony Hart, 17-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
merco1lem5 | ⊢ ((((𝜑 → ⊥) → 𝜒) → 𝜏) → (𝜑 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | merco1lem4 1727 | . 2 ⊢ ((((𝜏 → 𝜑) → (𝜑 → ⊥)) → 𝜒) → ((𝜑 → ⊥) → 𝜒)) | |
2 | merco1 1721 | . 2 ⊢ (((((𝜏 → 𝜑) → (𝜑 → ⊥)) → 𝜒) → ((𝜑 → ⊥) → 𝜒)) → ((((𝜑 → ⊥) → 𝜒) → 𝜏) → (𝜑 → 𝜏))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ((((𝜑 → ⊥) → 𝜒) → 𝜏) → (𝜑 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊥wfal 1555 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-tru 1546 df-fal 1556 |
This theorem is referenced by: merco1lem6 1729 merco1lem7 1730 merco1lem11 1735 merco1lem18 1742 |
Copyright terms: Public domain | W3C validator |