Proof of Theorem mercolem1
Step | Hyp | Ref
| Expression |
1 | | merco2 1740 |
. 2
⊢ (((𝜑 → 𝜑) → ((⊥ → 𝜑) → 𝜑)) → ((𝜑 → 𝜑) → (𝜑 → (𝜑 → 𝜑)))) |
2 | | merco2 1740 |
. . . 4
⊢ (((𝜒 → 𝜑) → ((⊥ → 𝜑) → (𝜑 → 𝜓))) → (((𝜑 → 𝜓) → 𝜒) → (𝜓 → (𝜃 → 𝜒)))) |
3 | | merco2 1740 |
. . . . . . 7
⊢ (((𝜓 → (𝜃 → 𝜒)) → ((⊥ → 𝜑) → ⊥)) → ((⊥ →
𝜓) → ((⊥ →
𝜑) → (𝜑 → 𝜓)))) |
4 | | merco2 1740 |
. . . . . . 7
⊢ ((((𝜓 → (𝜃 → 𝜒)) → ((⊥ → 𝜑) → ⊥)) → ((⊥ →
𝜓) → ((⊥ →
𝜑) → (𝜑 → 𝜓)))) → ((((⊥ → 𝜑) → (𝜑 → 𝜓)) → (𝜓 → (𝜃 → 𝜒))) → ((⊥ → 𝜑) → (((𝜑 → 𝜓) → 𝜒) → (𝜓 → (𝜃 → 𝜒)))))) |
5 | 3, 4 | ax-mp 5 |
. . . . . 6
⊢
((((⊥ → 𝜑)
→ (𝜑 → 𝜓)) → (𝜓 → (𝜃 → 𝜒))) → ((⊥ → 𝜑) → (((𝜑 → 𝜓) → 𝜒) → (𝜓 → (𝜃 → 𝜒))))) |
6 | | merco2 1740 |
. . . . . 6
⊢
(((((⊥ → 𝜑)
→ (𝜑 → 𝜓)) → (𝜓 → (𝜃 → 𝜒))) → ((⊥ → 𝜑) → (((𝜑 → 𝜓) → 𝜒) → (𝜓 → (𝜃 → 𝜒))))) → (((((𝜑 → 𝜓) → 𝜒) → (𝜓 → (𝜃 → 𝜒))) → ((⊥ → 𝜑) → (𝜑 → 𝜓))) → ((⊥ → 𝜑) → ((𝜒 → 𝜑) → ((⊥ → 𝜑) → (𝜑 → 𝜓)))))) |
7 | 5, 6 | ax-mp 5 |
. . . . 5
⊢
(((((𝜑 → 𝜓) → 𝜒) → (𝜓 → (𝜃 → 𝜒))) → ((⊥ → 𝜑) → (𝜑 → 𝜓))) → ((⊥ → 𝜑) → ((𝜒 → 𝜑) → ((⊥ → 𝜑) → (𝜑 → 𝜓))))) |
8 | | merco2 1740 |
. . . . 5
⊢
((((((𝜑 → 𝜓) → 𝜒) → (𝜓 → (𝜃 → 𝜒))) → ((⊥ → 𝜑) → (𝜑 → 𝜓))) → ((⊥ → 𝜑) → ((𝜒 → 𝜑) → ((⊥ → 𝜑) → (𝜑 → 𝜓))))) → ((((𝜒 → 𝜑) → ((⊥ → 𝜑) → (𝜑 → 𝜓))) → (((𝜑 → 𝜓) → 𝜒) → (𝜓 → (𝜃 → 𝜒)))) → ((((𝜑 → 𝜑) → ((⊥ → 𝜑) → 𝜑)) → ((𝜑 → 𝜑) → (𝜑 → (𝜑 → 𝜑)))) → ((((𝜑 → 𝜑) → ((⊥ → 𝜑) → 𝜑)) → ((𝜑 → 𝜑) → (𝜑 → (𝜑 → 𝜑)))) → (((𝜑 → 𝜓) → 𝜒) → (𝜓 → (𝜃 → 𝜒))))))) |
9 | 7, 8 | ax-mp 5 |
. . . 4
⊢ ((((𝜒 → 𝜑) → ((⊥ → 𝜑) → (𝜑 → 𝜓))) → (((𝜑 → 𝜓) → 𝜒) → (𝜓 → (𝜃 → 𝜒)))) → ((((𝜑 → 𝜑) → ((⊥ → 𝜑) → 𝜑)) → ((𝜑 → 𝜑) → (𝜑 → (𝜑 → 𝜑)))) → ((((𝜑 → 𝜑) → ((⊥ → 𝜑) → 𝜑)) → ((𝜑 → 𝜑) → (𝜑 → (𝜑 → 𝜑)))) → (((𝜑 → 𝜓) → 𝜒) → (𝜓 → (𝜃 → 𝜒)))))) |
10 | 2, 9 | ax-mp 5 |
. . 3
⊢ ((((𝜑 → 𝜑) → ((⊥ → 𝜑) → 𝜑)) → ((𝜑 → 𝜑) → (𝜑 → (𝜑 → 𝜑)))) → ((((𝜑 → 𝜑) → ((⊥ → 𝜑) → 𝜑)) → ((𝜑 → 𝜑) → (𝜑 → (𝜑 → 𝜑)))) → (((𝜑 → 𝜓) → 𝜒) → (𝜓 → (𝜃 → 𝜒))))) |
11 | 1, 10 | ax-mp 5 |
. 2
⊢ ((((𝜑 → 𝜑) → ((⊥ → 𝜑) → 𝜑)) → ((𝜑 → 𝜑) → (𝜑 → (𝜑 → 𝜑)))) → (((𝜑 → 𝜓) → 𝜒) → (𝜓 → (𝜃 → 𝜒)))) |
12 | 1, 11 | ax-mp 5 |
1
⊢ (((𝜑 → 𝜓) → 𝜒) → (𝜓 → (𝜃 → 𝜒))) |