Proof of Theorem mercolem2
Step | Hyp | Ref
| Expression |
1 | | merco2 1740 |
. 2
⊢ (((𝜑 → 𝜑) → ((⊥ → 𝜑) → 𝜑)) → ((𝜑 → 𝜑) → (𝜑 → (𝜑 → 𝜑)))) |
2 | | merco2 1740 |
. . . 4
⊢ (((𝜑 → 𝜑) → ((⊥ → 𝜑) → (𝜑 → 𝜓))) → (((𝜑 → 𝜓) → 𝜑) → (𝜒 → (𝜃 → 𝜑)))) |
3 | | merco2 1740 |
. . . . . . . 8
⊢ (((𝜑 → 𝜓) → ((⊥ → 𝜑) → ⊥)) → ((⊥ →
𝜑) → (𝜒 → (𝜃 → 𝜑)))) |
4 | | merco2 1740 |
. . . . . . . 8
⊢ ((((𝜑 → 𝜓) → ((⊥ → 𝜑) → ⊥)) → ((⊥ →
𝜑) → (𝜒 → (𝜃 → 𝜑)))) → (((𝜒 → (𝜃 → 𝜑)) → (𝜑 → 𝜓)) → ((⊥ → 𝜑) → ((⊥ → 𝜑) → (𝜑 → 𝜓))))) |
5 | 3, 4 | ax-mp 5 |
. . . . . . 7
⊢ (((𝜒 → (𝜃 → 𝜑)) → (𝜑 → 𝜓)) → ((⊥ → 𝜑) → ((⊥ → 𝜑) → (𝜑 → 𝜓)))) |
6 | | merco2 1740 |
. . . . . . 7
⊢ ((((𝜒 → (𝜃 → 𝜑)) → (𝜑 → 𝜓)) → ((⊥ → 𝜑) → ((⊥ → 𝜑) → (𝜑 → 𝜓)))) → ((((⊥ → 𝜑) → (𝜑 → 𝜓)) → (𝜒 → (𝜃 → 𝜑))) → ((⊥ → 𝜑) → (((𝜑 → 𝜓) → 𝜑) → (𝜒 → (𝜃 → 𝜑)))))) |
7 | 5, 6 | ax-mp 5 |
. . . . . 6
⊢
((((⊥ → 𝜑)
→ (𝜑 → 𝜓)) → (𝜒 → (𝜃 → 𝜑))) → ((⊥ → 𝜑) → (((𝜑 → 𝜓) → 𝜑) → (𝜒 → (𝜃 → 𝜑))))) |
8 | | merco2 1740 |
. . . . . 6
⊢
(((((⊥ → 𝜑)
→ (𝜑 → 𝜓)) → (𝜒 → (𝜃 → 𝜑))) → ((⊥ → 𝜑) → (((𝜑 → 𝜓) → 𝜑) → (𝜒 → (𝜃 → 𝜑))))) → (((((𝜑 → 𝜓) → 𝜑) → (𝜒 → (𝜃 → 𝜑))) → ((⊥ → 𝜑) → (𝜑 → 𝜓))) → ((⊥ → 𝜑) → ((𝜑 → 𝜑) → ((⊥ → 𝜑) → (𝜑 → 𝜓)))))) |
9 | 7, 8 | ax-mp 5 |
. . . . 5
⊢
(((((𝜑 → 𝜓) → 𝜑) → (𝜒 → (𝜃 → 𝜑))) → ((⊥ → 𝜑) → (𝜑 → 𝜓))) → ((⊥ → 𝜑) → ((𝜑 → 𝜑) → ((⊥ → 𝜑) → (𝜑 → 𝜓))))) |
10 | | merco2 1740 |
. . . . 5
⊢
((((((𝜑 → 𝜓) → 𝜑) → (𝜒 → (𝜃 → 𝜑))) → ((⊥ → 𝜑) → (𝜑 → 𝜓))) → ((⊥ → 𝜑) → ((𝜑 → 𝜑) → ((⊥ → 𝜑) → (𝜑 → 𝜓))))) → ((((𝜑 → 𝜑) → ((⊥ → 𝜑) → (𝜑 → 𝜓))) → (((𝜑 → 𝜓) → 𝜑) → (𝜒 → (𝜃 → 𝜑)))) → ((((𝜑 → 𝜑) → ((⊥ → 𝜑) → 𝜑)) → ((𝜑 → 𝜑) → (𝜑 → (𝜑 → 𝜑)))) → ((((𝜑 → 𝜑) → ((⊥ → 𝜑) → 𝜑)) → ((𝜑 → 𝜑) → (𝜑 → (𝜑 → 𝜑)))) → (((𝜑 → 𝜓) → 𝜑) → (𝜒 → (𝜃 → 𝜑))))))) |
11 | 9, 10 | ax-mp 5 |
. . . 4
⊢ ((((𝜑 → 𝜑) → ((⊥ → 𝜑) → (𝜑 → 𝜓))) → (((𝜑 → 𝜓) → 𝜑) → (𝜒 → (𝜃 → 𝜑)))) → ((((𝜑 → 𝜑) → ((⊥ → 𝜑) → 𝜑)) → ((𝜑 → 𝜑) → (𝜑 → (𝜑 → 𝜑)))) → ((((𝜑 → 𝜑) → ((⊥ → 𝜑) → 𝜑)) → ((𝜑 → 𝜑) → (𝜑 → (𝜑 → 𝜑)))) → (((𝜑 → 𝜓) → 𝜑) → (𝜒 → (𝜃 → 𝜑)))))) |
12 | 2, 11 | ax-mp 5 |
. . 3
⊢ ((((𝜑 → 𝜑) → ((⊥ → 𝜑) → 𝜑)) → ((𝜑 → 𝜑) → (𝜑 → (𝜑 → 𝜑)))) → ((((𝜑 → 𝜑) → ((⊥ → 𝜑) → 𝜑)) → ((𝜑 → 𝜑) → (𝜑 → (𝜑 → 𝜑)))) → (((𝜑 → 𝜓) → 𝜑) → (𝜒 → (𝜃 → 𝜑))))) |
13 | 1, 12 | ax-mp 5 |
. 2
⊢ ((((𝜑 → 𝜑) → ((⊥ → 𝜑) → 𝜑)) → ((𝜑 → 𝜑) → (𝜑 → (𝜑 → 𝜑)))) → (((𝜑 → 𝜓) → 𝜑) → (𝜒 → (𝜃 → 𝜑)))) |
14 | 1, 13 | ax-mp 5 |
1
⊢ (((𝜑 → 𝜓) → 𝜑) → (𝜒 → (𝜃 → 𝜑))) |