Proof of Theorem mercolem5
Step | Hyp | Ref
| Expression |
1 | | merco2 1738 |
. 2
⊢ (((𝜑 → 𝜑) → ((⊥ → 𝜑) → 𝜑)) → ((𝜑 → 𝜑) → (𝜑 → (𝜑 → 𝜑)))) |
2 | | merco2 1738 |
. . . . 5
⊢ (((𝜑 → 𝜑) → ((⊥ → 𝜑) → 𝜃)) → ((𝜃 → 𝜑) → (𝜏 → (𝜒 → 𝜑)))) |
3 | | mercolem1 1739 |
. . . . 5
⊢ ((((𝜑 → 𝜑) → ((⊥ → 𝜑) → 𝜃)) → ((𝜃 → 𝜑) → (𝜏 → (𝜒 → 𝜑)))) → (((⊥ → 𝜑) → 𝜃) → (𝜃 → ((𝜃 → 𝜑) → (𝜏 → (𝜒 → 𝜑)))))) |
4 | 2, 3 | ax-mp 5 |
. . . 4
⊢ (((⊥
→ 𝜑) → 𝜃) → (𝜃 → ((𝜃 → 𝜑) → (𝜏 → (𝜒 → 𝜑))))) |
5 | | mercolem2 1740 |
. . . . 5
⊢ (((𝜃 → ((𝜃 → 𝜑) → (𝜏 → (𝜒 → 𝜑)))) → 𝜃) → ((⊥ → 𝜑) → ((⊥ → 𝜑) → 𝜃))) |
6 | | merco2 1738 |
. . . . 5
⊢ ((((𝜃 → ((𝜃 → 𝜑) → (𝜏 → (𝜒 → 𝜑)))) → 𝜃) → ((⊥ → 𝜑) → ((⊥ → 𝜑) → 𝜃))) → ((((⊥ → 𝜑) → 𝜃) → (𝜃 → ((𝜃 → 𝜑) → (𝜏 → (𝜒 → 𝜑))))) → ((((𝜑 → 𝜑) → ((⊥ → 𝜑) → 𝜑)) → ((𝜑 → 𝜑) → (𝜑 → (𝜑 → 𝜑)))) → ((((𝜑 → 𝜑) → ((⊥ → 𝜑) → 𝜑)) → ((𝜑 → 𝜑) → (𝜑 → (𝜑 → 𝜑)))) → (𝜃 → ((𝜃 → 𝜑) → (𝜏 → (𝜒 → 𝜑)))))))) |
7 | 5, 6 | ax-mp 5 |
. . . 4
⊢
((((⊥ → 𝜑)
→ 𝜃) → (𝜃 → ((𝜃 → 𝜑) → (𝜏 → (𝜒 → 𝜑))))) → ((((𝜑 → 𝜑) → ((⊥ → 𝜑) → 𝜑)) → ((𝜑 → 𝜑) → (𝜑 → (𝜑 → 𝜑)))) → ((((𝜑 → 𝜑) → ((⊥ → 𝜑) → 𝜑)) → ((𝜑 → 𝜑) → (𝜑 → (𝜑 → 𝜑)))) → (𝜃 → ((𝜃 → 𝜑) → (𝜏 → (𝜒 → 𝜑))))))) |
8 | 4, 7 | ax-mp 5 |
. . 3
⊢ ((((𝜑 → 𝜑) → ((⊥ → 𝜑) → 𝜑)) → ((𝜑 → 𝜑) → (𝜑 → (𝜑 → 𝜑)))) → ((((𝜑 → 𝜑) → ((⊥ → 𝜑) → 𝜑)) → ((𝜑 → 𝜑) → (𝜑 → (𝜑 → 𝜑)))) → (𝜃 → ((𝜃 → 𝜑) → (𝜏 → (𝜒 → 𝜑)))))) |
9 | 1, 8 | ax-mp 5 |
. 2
⊢ ((((𝜑 → 𝜑) → ((⊥ → 𝜑) → 𝜑)) → ((𝜑 → 𝜑) → (𝜑 → (𝜑 → 𝜑)))) → (𝜃 → ((𝜃 → 𝜑) → (𝜏 → (𝜒 → 𝜑))))) |
10 | 1, 9 | ax-mp 5 |
1
⊢ (𝜃 → ((𝜃 → 𝜑) → (𝜏 → (𝜒 → 𝜑)))) |