Proof of Theorem mercolem7
Step | Hyp | Ref
| Expression |
1 | | merco2 1740 |
. 2
⊢ (((𝜑 → 𝜑) → ((⊥ → 𝜑) → 𝜑)) → ((𝜑 → 𝜑) → (𝜑 → (𝜑 → 𝜑)))) |
2 | | mercolem3 1743 |
. . . 4
⊢ (((𝜑 → 𝜒) → (𝜃 → 𝜓)) → ((𝜑 → 𝜒) → (((𝜑 → 𝜒) → (𝜃 → 𝜓)) → (𝜃 → 𝜓)))) |
3 | | mercolem6 1746 |
. . . 4
⊢ ((((𝜑 → 𝜒) → (𝜃 → 𝜓)) → ((𝜑 → 𝜒) → (((𝜑 → 𝜒) → (𝜃 → 𝜓)) → (𝜃 → 𝜓)))) → ((𝜑 → 𝜒) → (((𝜑 → 𝜒) → (𝜃 → 𝜓)) → (𝜃 → 𝜓)))) |
4 | 2, 3 | ax-mp 5 |
. . 3
⊢ ((𝜑 → 𝜒) → (((𝜑 → 𝜒) → (𝜃 → 𝜓)) → (𝜃 → 𝜓))) |
5 | | mercolem5 1745 |
. . . 4
⊢ (𝜑 → ((𝜑 → 𝜓) → (((𝜑 → 𝜒) → (𝜃 → 𝜓)) → (𝜃 → 𝜓)))) |
6 | | mercolem4 1744 |
. . . 4
⊢ ((𝜑 → ((𝜑 → 𝜓) → (((𝜑 → 𝜒) → (𝜃 → 𝜓)) → (𝜃 → 𝜓)))) → (((𝜑 → 𝜒) → (((𝜑 → 𝜒) → (𝜃 → 𝜓)) → (𝜃 → 𝜓))) → ((((𝜑 → 𝜑) → ((⊥ → 𝜑) → 𝜑)) → ((𝜑 → 𝜑) → (𝜑 → (𝜑 → 𝜑)))) → ((𝜑 → 𝜓) → (((𝜑 → 𝜒) → (𝜃 → 𝜓)) → (𝜃 → 𝜓)))))) |
7 | 5, 6 | ax-mp 5 |
. . 3
⊢ (((𝜑 → 𝜒) → (((𝜑 → 𝜒) → (𝜃 → 𝜓)) → (𝜃 → 𝜓))) → ((((𝜑 → 𝜑) → ((⊥ → 𝜑) → 𝜑)) → ((𝜑 → 𝜑) → (𝜑 → (𝜑 → 𝜑)))) → ((𝜑 → 𝜓) → (((𝜑 → 𝜒) → (𝜃 → 𝜓)) → (𝜃 → 𝜓))))) |
8 | 4, 7 | ax-mp 5 |
. 2
⊢ ((((𝜑 → 𝜑) → ((⊥ → 𝜑) → 𝜑)) → ((𝜑 → 𝜑) → (𝜑 → (𝜑 → 𝜑)))) → ((𝜑 → 𝜓) → (((𝜑 → 𝜒) → (𝜃 → 𝜓)) → (𝜃 → 𝜓)))) |
9 | 1, 8 | ax-mp 5 |
1
⊢ ((𝜑 → 𝜓) → (((𝜑 → 𝜒) → (𝜃 → 𝜓)) → (𝜃 → 𝜓))) |