MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mercolem3 Structured version   Visualization version   GIF version

Theorem mercolem3 1745
Description: Used to rederive the Tarski-Bernays-Wajsberg axioms from merco2 1742. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
mercolem3 ((𝜓𝜒) → (𝜓 → (𝜑𝜒)))

Proof of Theorem mercolem3
StepHypRef Expression
1 merco2 1742 . 2 (((𝜑𝜑) → ((⊥ → 𝜑) → 𝜑)) → ((𝜑𝜑) → (𝜑 → (𝜑𝜑))))
2 merco2 1742 . . . 4 (((𝜒𝜑) → ((⊥ → 𝜑) → 𝜓)) → ((𝜓𝜒) → (𝜓 → (𝜑𝜒))))
3 mercolem2 1744 . . . . . . 7 (((𝜓 → (𝜑𝜒)) → 𝜓) → ((⊥ → 𝜑) → ((⊥ → 𝜑) → 𝜓)))
4 merco2 1742 . . . . . . 7 ((((𝜓 → (𝜑𝜒)) → 𝜓) → ((⊥ → 𝜑) → ((⊥ → 𝜑) → 𝜓))) → ((((⊥ → 𝜑) → 𝜓) → (𝜓 → (𝜑𝜒))) → ((⊥ → 𝜑) → ((𝜓𝜒) → (𝜓 → (𝜑𝜒))))))
53, 4ax-mp 5 . . . . . 6 ((((⊥ → 𝜑) → 𝜓) → (𝜓 → (𝜑𝜒))) → ((⊥ → 𝜑) → ((𝜓𝜒) → (𝜓 → (𝜑𝜒)))))
6 merco2 1742 . . . . . 6 (((((⊥ → 𝜑) → 𝜓) → (𝜓 → (𝜑𝜒))) → ((⊥ → 𝜑) → ((𝜓𝜒) → (𝜓 → (𝜑𝜒))))) → ((((𝜓𝜒) → (𝜓 → (𝜑𝜒))) → ((⊥ → 𝜑) → 𝜓)) → ((⊥ → 𝜑) → ((𝜒𝜑) → ((⊥ → 𝜑) → 𝜓)))))
75, 6ax-mp 5 . . . . 5 ((((𝜓𝜒) → (𝜓 → (𝜑𝜒))) → ((⊥ → 𝜑) → 𝜓)) → ((⊥ → 𝜑) → ((𝜒𝜑) → ((⊥ → 𝜑) → 𝜓))))
8 merco2 1742 . . . . 5 (((((𝜓𝜒) → (𝜓 → (𝜑𝜒))) → ((⊥ → 𝜑) → 𝜓)) → ((⊥ → 𝜑) → ((𝜒𝜑) → ((⊥ → 𝜑) → 𝜓)))) → ((((𝜒𝜑) → ((⊥ → 𝜑) → 𝜓)) → ((𝜓𝜒) → (𝜓 → (𝜑𝜒)))) → ((((𝜑𝜑) → ((⊥ → 𝜑) → 𝜑)) → ((𝜑𝜑) → (𝜑 → (𝜑𝜑)))) → ((((𝜑𝜑) → ((⊥ → 𝜑) → 𝜑)) → ((𝜑𝜑) → (𝜑 → (𝜑𝜑)))) → ((𝜓𝜒) → (𝜓 → (𝜑𝜒)))))))
97, 8ax-mp 5 . . . 4 ((((𝜒𝜑) → ((⊥ → 𝜑) → 𝜓)) → ((𝜓𝜒) → (𝜓 → (𝜑𝜒)))) → ((((𝜑𝜑) → ((⊥ → 𝜑) → 𝜑)) → ((𝜑𝜑) → (𝜑 → (𝜑𝜑)))) → ((((𝜑𝜑) → ((⊥ → 𝜑) → 𝜑)) → ((𝜑𝜑) → (𝜑 → (𝜑𝜑)))) → ((𝜓𝜒) → (𝜓 → (𝜑𝜒))))))
102, 9ax-mp 5 . . 3 ((((𝜑𝜑) → ((⊥ → 𝜑) → 𝜑)) → ((𝜑𝜑) → (𝜑 → (𝜑𝜑)))) → ((((𝜑𝜑) → ((⊥ → 𝜑) → 𝜑)) → ((𝜑𝜑) → (𝜑 → (𝜑𝜑)))) → ((𝜓𝜒) → (𝜓 → (𝜑𝜒)))))
111, 10ax-mp 5 . 2 ((((𝜑𝜑) → ((⊥ → 𝜑) → 𝜑)) → ((𝜑𝜑) → (𝜑 → (𝜑𝜑)))) → ((𝜓𝜒) → (𝜓 → (𝜑𝜒))))
121, 11ax-mp 5 1 ((𝜓𝜒) → (𝜓 → (𝜑𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wfal 1553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-tru 1544  df-fal 1554
This theorem is referenced by:  mercolem4  1746  mercolem7  1749  mercolem8  1750  re1tbw1  1751  re1tbw4  1754
  Copyright terms: Public domain W3C validator