MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mt2bi Structured version   Visualization version   GIF version

Theorem mt2bi 367
Description: A false consequent falsifies an antecedent. (Contributed by NM, 19-Aug-1993.) (Proof shortened by Wolf Lammen, 12-Nov-2012.)
Hypothesis
Ref Expression
mt2bi.1 𝜑
Assertion
Ref Expression
mt2bi 𝜓 ↔ (𝜓 → ¬ 𝜑))

Proof of Theorem mt2bi
StepHypRef Expression
1 mt2bi.1 . . 3 𝜑
21a1bi 366 . 2 𝜓 ↔ (𝜑 → ¬ 𝜓))
3 con2b 363 . 2 ((𝜑 → ¬ 𝜓) ↔ (𝜓 → ¬ 𝜑))
42, 3bitri 278 1 𝜓 ↔ (𝜓 → ¬ 𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator