MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  con2b Structured version   Visualization version   GIF version

Theorem con2b 359
Description: Contraposition. Bidirectional version of con2 135. (Contributed by NM, 12-Mar-1993.)
Assertion
Ref Expression
con2b ((𝜑 → ¬ 𝜓) ↔ (𝜓 → ¬ 𝜑))

Proof of Theorem con2b
StepHypRef Expression
1 con2 135 . 2 ((𝜑 → ¬ 𝜓) → (𝜓 → ¬ 𝜑))
2 con2 135 . 2 ((𝜓 → ¬ 𝜑) → (𝜑 → ¬ 𝜓))
31, 2impbii 209 1 ((𝜑 → ¬ 𝜓) ↔ (𝜓 → ¬ 𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  mt2bi  363  pm4.15  833  nancom  1492  nic-ax  1669  nic-axALT  1670  alimex  1827  dfdif3OLD  4127  ssconb  4151  disjsn  4715  oneqmini  6437  kmlem4  10191  isprm3  16716  ssdifidlprm  33465  bnj1171  34992  bnj1176  34997  bnj1204  35004  bnj1388  35025  bnj1523  35063  fvineqsneq  37394  dfxor5  43756  pm13.196a  44409
  Copyright terms: Public domain W3C validator