MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  con2b Structured version   Visualization version   GIF version

Theorem con2b 360
Description: Contraposition. Bidirectional version of con2 135. (Contributed by NM, 12-Mar-1993.)
Assertion
Ref Expression
con2b ((𝜑 → ¬ 𝜓) ↔ (𝜓 → ¬ 𝜑))

Proof of Theorem con2b
StepHypRef Expression
1 con2 135 . 2 ((𝜑 → ¬ 𝜓) → (𝜓 → ¬ 𝜑))
2 con2 135 . 2 ((𝜓 → ¬ 𝜑) → (𝜑 → ¬ 𝜓))
31, 2impbii 208 1 ((𝜑 → ¬ 𝜓) ↔ (𝜓 → ¬ 𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  mt2bi  364  pm4.15  830  nancom  1491  nic-ax  1676  nic-axALT  1677  alimex  1833  dfdif3  4049  ssconb  4072  disjsn  4647  oneqmini  6317  kmlem4  9909  isprm3  16388  bnj1171  32980  bnj1176  32985  bnj1204  32992  bnj1388  33013  bnj1523  33051  fvineqsneq  35583  dfxor5  41375  pm13.196a  42032
  Copyright terms: Public domain W3C validator