| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con2b | Structured version Visualization version GIF version | ||
| Description: Contraposition. Bidirectional version of con2 135. (Contributed by NM, 12-Mar-1993.) |
| Ref | Expression |
|---|---|
| con2b | ⊢ ((𝜑 → ¬ 𝜓) ↔ (𝜓 → ¬ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con2 135 | . 2 ⊢ ((𝜑 → ¬ 𝜓) → (𝜓 → ¬ 𝜑)) | |
| 2 | con2 135 | . 2 ⊢ ((𝜓 → ¬ 𝜑) → (𝜑 → ¬ 𝜓)) | |
| 3 | 1, 2 | impbii 209 | 1 ⊢ ((𝜑 → ¬ 𝜓) ↔ (𝜓 → ¬ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: mt2bi 363 pm4.15 832 nancom 1496 nic-ax 1673 nic-axALT 1674 alimex 1831 dfdif3OLD 4081 ssconb 4105 disjsn 4675 oneqmini 6385 kmlem4 10107 isprm3 16653 ssdifidlprm 33429 bnj1171 34990 bnj1176 34995 bnj1204 35002 bnj1388 35023 bnj1523 35061 fvineqsneq 37400 dfxor5 43756 pm13.196a 44403 sswfaxreg 44977 |
| Copyright terms: Public domain | W3C validator |