MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  con2b Structured version   Visualization version   GIF version

Theorem con2b 359
Description: Contraposition. Bidirectional version of con2 135. (Contributed by NM, 12-Mar-1993.)
Assertion
Ref Expression
con2b ((𝜑 → ¬ 𝜓) ↔ (𝜓 → ¬ 𝜑))

Proof of Theorem con2b
StepHypRef Expression
1 con2 135 . 2 ((𝜑 → ¬ 𝜓) → (𝜓 → ¬ 𝜑))
2 con2 135 . 2 ((𝜓 → ¬ 𝜑) → (𝜑 → ¬ 𝜓))
31, 2impbii 209 1 ((𝜑 → ¬ 𝜓) ↔ (𝜓 → ¬ 𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  mt2bi  363  pm4.15  832  nancom  1496  nic-ax  1673  nic-axALT  1674  alimex  1831  dfdif3OLD  4071  ssconb  4095  disjsn  4665  oneqmini  6364  kmlem4  10067  isprm3  16612  ssdifidlprm  33405  bnj1171  34966  bnj1176  34971  bnj1204  34978  bnj1388  34999  bnj1523  35037  fvineqsneq  37385  dfxor5  43740  pm13.196a  44387  sswfaxreg  44961
  Copyright terms: Public domain W3C validator