![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > con2b | Structured version Visualization version GIF version |
Description: Contraposition. Bidirectional version of con2 135. (Contributed by NM, 12-Mar-1993.) |
Ref | Expression |
---|---|
con2b | ⊢ ((𝜑 → ¬ 𝜓) ↔ (𝜓 → ¬ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con2 135 | . 2 ⊢ ((𝜑 → ¬ 𝜓) → (𝜓 → ¬ 𝜑)) | |
2 | con2 135 | . 2 ⊢ ((𝜓 → ¬ 𝜑) → (𝜑 → ¬ 𝜓)) | |
3 | 1, 2 | impbii 208 | 1 ⊢ ((𝜑 → ¬ 𝜓) ↔ (𝜓 → ¬ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: mt2bi 364 pm4.15 832 nancom 1495 nic-ax 1676 nic-axALT 1677 alimex 1834 dfdif3 4115 ssconb 4138 disjsn 4716 oneqmini 6417 kmlem4 10148 isprm3 16620 bnj1171 34011 bnj1176 34016 bnj1204 34023 bnj1388 34044 bnj1523 34082 fvineqsneq 36293 dfxor5 42518 pm13.196a 43173 |
Copyright terms: Public domain | W3C validator |