Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > con2b | Structured version Visualization version GIF version |
Description: Contraposition. Bidirectional version of con2 135. (Contributed by NM, 12-Mar-1993.) |
Ref | Expression |
---|---|
con2b | ⊢ ((𝜑 → ¬ 𝜓) ↔ (𝜓 → ¬ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con2 135 | . 2 ⊢ ((𝜑 → ¬ 𝜓) → (𝜓 → ¬ 𝜑)) | |
2 | con2 135 | . 2 ⊢ ((𝜓 → ¬ 𝜑) → (𝜑 → ¬ 𝜓)) | |
3 | 1, 2 | impbii 208 | 1 ⊢ ((𝜑 → ¬ 𝜓) ↔ (𝜓 → ¬ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: mt2bi 364 pm4.15 830 nancom 1491 nic-ax 1676 nic-axALT 1677 alimex 1833 dfdif3 4049 ssconb 4072 disjsn 4647 oneqmini 6317 kmlem4 9909 isprm3 16388 bnj1171 32980 bnj1176 32985 bnj1204 32992 bnj1388 33013 bnj1523 33051 fvineqsneq 35583 dfxor5 41375 pm13.196a 42032 |
Copyright terms: Public domain | W3C validator |