MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  con2b Structured version   Visualization version   GIF version

Theorem con2b 359
Description: Contraposition. Bidirectional version of con2 135. (Contributed by NM, 12-Mar-1993.)
Assertion
Ref Expression
con2b ((𝜑 → ¬ 𝜓) ↔ (𝜓 → ¬ 𝜑))

Proof of Theorem con2b
StepHypRef Expression
1 con2 135 . 2 ((𝜑 → ¬ 𝜓) → (𝜓 → ¬ 𝜑))
2 con2 135 . 2 ((𝜓 → ¬ 𝜑) → (𝜑 → ¬ 𝜓))
31, 2impbii 209 1 ((𝜑 → ¬ 𝜓) ↔ (𝜓 → ¬ 𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  mt2bi  363  pm4.15  832  nancom  1497  nic-ax  1674  nic-axALT  1675  alimex  1832  dfdif3OLD  4068  ssconb  4092  disjsn  4664  oneqmini  6359  kmlem4  10042  isprm3  16591  ssdifidlprm  33418  bnj1171  35007  bnj1176  35012  bnj1204  35019  bnj1388  35040  bnj1523  35078  fvineqsneq  37445  dfxor5  43799  pm13.196a  44446  sswfaxreg  45019
  Copyright terms: Public domain W3C validator