| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con2b | Structured version Visualization version GIF version | ||
| Description: Contraposition. Bidirectional version of con2 135. (Contributed by NM, 12-Mar-1993.) |
| Ref | Expression |
|---|---|
| con2b | ⊢ ((𝜑 → ¬ 𝜓) ↔ (𝜓 → ¬ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con2 135 | . 2 ⊢ ((𝜑 → ¬ 𝜓) → (𝜓 → ¬ 𝜑)) | |
| 2 | con2 135 | . 2 ⊢ ((𝜓 → ¬ 𝜑) → (𝜑 → ¬ 𝜓)) | |
| 3 | 1, 2 | impbii 209 | 1 ⊢ ((𝜑 → ¬ 𝜓) ↔ (𝜓 → ¬ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: mt2bi 363 pm4.15 832 nancom 1497 nic-ax 1674 nic-axALT 1675 alimex 1832 dfdif3OLD 4068 ssconb 4092 disjsn 4664 oneqmini 6359 kmlem4 10042 isprm3 16591 ssdifidlprm 33418 bnj1171 35007 bnj1176 35012 bnj1204 35019 bnj1388 35040 bnj1523 35078 fvineqsneq 37445 dfxor5 43799 pm13.196a 44446 sswfaxreg 45019 |
| Copyright terms: Public domain | W3C validator |