MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  con2b Structured version   Visualization version   GIF version

Theorem con2b 359
Description: Contraposition. Bidirectional version of con2 135. (Contributed by NM, 12-Mar-1993.)
Assertion
Ref Expression
con2b ((𝜑 → ¬ 𝜓) ↔ (𝜓 → ¬ 𝜑))

Proof of Theorem con2b
StepHypRef Expression
1 con2 135 . 2 ((𝜑 → ¬ 𝜓) → (𝜓 → ¬ 𝜑))
2 con2 135 . 2 ((𝜓 → ¬ 𝜑) → (𝜑 → ¬ 𝜓))
31, 2impbii 209 1 ((𝜑 → ¬ 𝜓) ↔ (𝜓 → ¬ 𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  mt2bi  363  pm4.15  832  nancom  1496  nic-ax  1673  nic-axALT  1674  alimex  1831  dfdif3OLD  4093  ssconb  4117  disjsn  4687  oneqmini  6405  kmlem4  10168  isprm3  16702  ssdifidlprm  33473  bnj1171  35031  bnj1176  35036  bnj1204  35043  bnj1388  35064  bnj1523  35102  fvineqsneq  37430  dfxor5  43791  pm13.196a  44438  sswfaxreg  45012
  Copyright terms: Public domain W3C validator