| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con2b | Structured version Visualization version GIF version | ||
| Description: Contraposition. Bidirectional version of con2 135. (Contributed by NM, 12-Mar-1993.) |
| Ref | Expression |
|---|---|
| con2b | ⊢ ((𝜑 → ¬ 𝜓) ↔ (𝜓 → ¬ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con2 135 | . 2 ⊢ ((𝜑 → ¬ 𝜓) → (𝜓 → ¬ 𝜑)) | |
| 2 | con2 135 | . 2 ⊢ ((𝜓 → ¬ 𝜑) → (𝜑 → ¬ 𝜓)) | |
| 3 | 1, 2 | impbii 209 | 1 ⊢ ((𝜑 → ¬ 𝜓) ↔ (𝜓 → ¬ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: mt2bi 363 pm4.15 832 nancom 1496 nic-ax 1673 nic-axALT 1674 alimex 1831 dfdif3OLD 4093 ssconb 4117 disjsn 4687 oneqmini 6405 kmlem4 10168 isprm3 16702 ssdifidlprm 33473 bnj1171 35031 bnj1176 35036 bnj1204 35043 bnj1388 35064 bnj1523 35102 fvineqsneq 37430 dfxor5 43791 pm13.196a 44438 sswfaxreg 45012 |
| Copyright terms: Public domain | W3C validator |