Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > con2b | Structured version Visualization version GIF version |
Description: Contraposition. Bidirectional version of con2 135. (Contributed by NM, 12-Mar-1993.) |
Ref | Expression |
---|---|
con2b | ⊢ ((𝜑 → ¬ 𝜓) ↔ (𝜓 → ¬ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con2 135 | . 2 ⊢ ((𝜑 → ¬ 𝜓) → (𝜓 → ¬ 𝜑)) | |
2 | con2 135 | . 2 ⊢ ((𝜓 → ¬ 𝜑) → (𝜑 → ¬ 𝜓)) | |
3 | 1, 2 | impbii 208 | 1 ⊢ ((𝜑 → ¬ 𝜓) ↔ (𝜓 → ¬ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: mt2bi 363 pm4.15 829 nancom 1488 nic-ax 1677 nic-axALT 1678 alimex 1834 dfdif3 4045 ssconb 4068 disjsn 4644 oneqmini 6302 kmlem4 9840 isprm3 16316 bnj1171 32880 bnj1176 32885 bnj1204 32892 bnj1388 32913 bnj1523 32951 fvineqsneq 35510 dfxor5 41264 pm13.196a 41921 |
Copyright terms: Public domain | W3C validator |