| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con2b | Structured version Visualization version GIF version | ||
| Description: Contraposition. Bidirectional version of con2 135. (Contributed by NM, 12-Mar-1993.) |
| Ref | Expression |
|---|---|
| con2b | ⊢ ((𝜑 → ¬ 𝜓) ↔ (𝜓 → ¬ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con2 135 | . 2 ⊢ ((𝜑 → ¬ 𝜓) → (𝜓 → ¬ 𝜑)) | |
| 2 | con2 135 | . 2 ⊢ ((𝜓 → ¬ 𝜑) → (𝜑 → ¬ 𝜓)) | |
| 3 | 1, 2 | impbii 209 | 1 ⊢ ((𝜑 → ¬ 𝜓) ↔ (𝜓 → ¬ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: mt2bi 363 pm4.15 832 nancom 1496 nic-ax 1673 nic-axALT 1674 alimex 1831 dfdif3OLD 4084 ssconb 4108 disjsn 4678 oneqmini 6388 kmlem4 10114 isprm3 16660 ssdifidlprm 33436 bnj1171 34997 bnj1176 35002 bnj1204 35009 bnj1388 35030 bnj1523 35068 fvineqsneq 37407 dfxor5 43763 pm13.196a 44410 sswfaxreg 44984 |
| Copyright terms: Public domain | W3C validator |