![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > con2b | Structured version Visualization version GIF version |
Description: Contraposition. Bidirectional version of con2 135. (Contributed by NM, 12-Mar-1993.) |
Ref | Expression |
---|---|
con2b | ⊢ ((𝜑 → ¬ 𝜓) ↔ (𝜓 → ¬ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con2 135 | . 2 ⊢ ((𝜑 → ¬ 𝜓) → (𝜓 → ¬ 𝜑)) | |
2 | con2 135 | . 2 ⊢ ((𝜓 → ¬ 𝜑) → (𝜑 → ¬ 𝜓)) | |
3 | 1, 2 | impbii 208 | 1 ⊢ ((𝜑 → ¬ 𝜓) ↔ (𝜓 → ¬ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: mt2bi 363 pm4.15 832 nancom 1490 nic-ax 1668 nic-axALT 1669 alimex 1826 dfdif3 4110 ssconb 4133 disjsn 4711 oneqmini 6415 kmlem4 10162 isprm3 16639 bnj1171 34554 bnj1176 34559 bnj1204 34566 bnj1388 34587 bnj1523 34625 fvineqsneq 36814 dfxor5 43110 pm13.196a 43764 |
Copyright terms: Public domain | W3C validator |