MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  con2b Structured version   Visualization version   GIF version

Theorem con2b 359
Description: Contraposition. Bidirectional version of con2 135. (Contributed by NM, 12-Mar-1993.)
Assertion
Ref Expression
con2b ((𝜑 → ¬ 𝜓) ↔ (𝜓 → ¬ 𝜑))

Proof of Theorem con2b
StepHypRef Expression
1 con2 135 . 2 ((𝜑 → ¬ 𝜓) → (𝜓 → ¬ 𝜑))
2 con2 135 . 2 ((𝜓 → ¬ 𝜑) → (𝜑 → ¬ 𝜓))
31, 2impbii 208 1 ((𝜑 → ¬ 𝜓) ↔ (𝜓 → ¬ 𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  mt2bi  363  pm4.15  829  nancom  1488  nic-ax  1677  nic-axALT  1678  alimex  1834  dfdif3  4045  ssconb  4068  disjsn  4644  oneqmini  6302  kmlem4  9840  isprm3  16316  bnj1171  32880  bnj1176  32885  bnj1204  32892  bnj1388  32913  bnj1523  32951  fvineqsneq  35510  dfxor5  41264  pm13.196a  41921
  Copyright terms: Public domain W3C validator