| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con2b | Structured version Visualization version GIF version | ||
| Description: Contraposition. Bidirectional version of con2 135. (Contributed by NM, 12-Mar-1993.) |
| Ref | Expression |
|---|---|
| con2b | ⊢ ((𝜑 → ¬ 𝜓) ↔ (𝜓 → ¬ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con2 135 | . 2 ⊢ ((𝜑 → ¬ 𝜓) → (𝜓 → ¬ 𝜑)) | |
| 2 | con2 135 | . 2 ⊢ ((𝜓 → ¬ 𝜑) → (𝜑 → ¬ 𝜓)) | |
| 3 | 1, 2 | impbii 209 | 1 ⊢ ((𝜑 → ¬ 𝜓) ↔ (𝜓 → ¬ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: mt2bi 363 pm4.15 832 nancom 1497 nic-ax 1674 nic-axALT 1675 alimex 1832 dfdif3OLD 4067 ssconb 4091 disjsn 4663 oneqmini 6364 kmlem4 10052 isprm3 16596 ssdifidlprm 33430 bnj1171 35033 bnj1176 35038 bnj1204 35045 bnj1388 35066 bnj1523 35104 fvineqsneq 37477 dfxor5 43884 pm13.196a 44531 sswfaxreg 45104 |
| Copyright terms: Public domain | W3C validator |