Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mtt | Structured version Visualization version GIF version |
Description: Modus-tollens-like theorem. (Contributed by NM, 7-Apr-2001.) (Proof shortened by Wolf Lammen, 12-Nov-2012.) |
Ref | Expression |
---|---|
mtt | ⊢ (¬ 𝜑 → (¬ 𝜓 ↔ (𝜓 → 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimt 360 | . 2 ⊢ (¬ 𝜑 → (¬ 𝜓 ↔ (¬ 𝜑 → ¬ 𝜓))) | |
2 | con34b 315 | . 2 ⊢ ((𝜓 → 𝜑) ↔ (¬ 𝜑 → ¬ 𝜓)) | |
3 | 1, 2 | bitr4di 288 | 1 ⊢ (¬ 𝜑 → (¬ 𝜓 ↔ (𝜓 → 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: imnot 365 dfnot 1560 ralf0OLD 4453 fnsuppres 7991 axpownd 10341 largei 30608 |
Copyright terms: Public domain | W3C validator |