| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > a1bi | Structured version Visualization version GIF version | ||
| Description: Inference introducing a theorem as an antecedent. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 11-Nov-2012.) |
| Ref | Expression |
|---|---|
| a1bi.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| a1bi | ⊢ (𝜓 ↔ (𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | a1bi.1 | . 2 ⊢ 𝜑 | |
| 2 | biimt 360 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜑 → 𝜓))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜓 ↔ (𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: mt2bi 363 pm4.83 1026 trut 1546 equsv 2003 equsalv 2268 equsal 2422 2sb6rf 2478 sb4b 2480 sbequ8 2506 ralv 3492 ceqsal 3503 ceqsalv 3505 sbceqal 3832 relop 5835 acsfn0 17677 cmpsub 23343 ballotlemodife 34535 bj-equsvt 36802 bj-sbievw1 36868 bj-sbievw 36870 bj-ralvw 36902 wl-2mintru2 37514 wl-equsalvw 37561 wl-equsald 37562 wl-equsaldv 37563 lub0N 39212 glb0N 39216 |
| Copyright terms: Public domain | W3C validator |