| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > a1bi | Structured version Visualization version GIF version | ||
| Description: Inference introducing a theorem as an antecedent. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 11-Nov-2012.) |
| Ref | Expression |
|---|---|
| a1bi.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| a1bi | ⊢ (𝜓 ↔ (𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | a1bi.1 | . 2 ⊢ 𝜑 | |
| 2 | biimt 360 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜑 → 𝜓))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜓 ↔ (𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: mt2bi 363 pm4.83 1026 trut 1547 equsv 2004 equsalv 2272 equsal 2419 2sb6rf 2475 sb4b 2477 sbequ8 2503 ralv 3464 ceqsal 3475 ceqsalv 3477 sbceqal 3799 relop 5796 acsfn0 17570 cmpsub 23318 ballotlemodife 34534 bj-equsvt 36846 bj-sbievw1 36912 bj-sbievw 36914 bj-ralvw 36946 wl-2mintru2 37558 wl-equsalvw 37605 wl-equsald 37606 wl-equsaldv 37607 lub0N 39311 glb0N 39315 |
| Copyright terms: Public domain | W3C validator |