MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  a1bi Structured version   Visualization version   GIF version

Theorem a1bi 362
Description: Inference introducing a theorem as an antecedent. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 11-Nov-2012.)
Hypothesis
Ref Expression
a1bi.1 𝜑
Assertion
Ref Expression
a1bi (𝜓 ↔ (𝜑𝜓))

Proof of Theorem a1bi
StepHypRef Expression
1 a1bi.1 . 2 𝜑
2 biimt 360 . 2 (𝜑 → (𝜓 ↔ (𝜑𝜓)))
31, 2ax-mp 5 1 (𝜓 ↔ (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  mt2bi  363  pm4.83  1027  trut  1546  equsv  2002  equsalv  2267  equsal  2422  2sb6rf  2478  sb4b  2480  sbequ8  2506  ralv  3508  ceqsal  3519  ceqsalv  3521  sbceqal  3851  relop  5861  acsfn0  17703  cmpsub  23408  ballotlemodife  34500  bj-equsvt  36780  bj-sbievw1  36846  bj-sbievw  36848  bj-ralvw  36880  wl-2mintru2  37492  wl-equsalvw  37539  wl-equsald  37540  wl-equsaldv  37541  lub0N  39190  glb0N  39194
  Copyright terms: Public domain W3C validator