![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > a1bi | Structured version Visualization version GIF version |
Description: Inference introducing a theorem as an antecedent. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 11-Nov-2012.) |
Ref | Expression |
---|---|
a1bi.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
a1bi | ⊢ (𝜓 ↔ (𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | a1bi.1 | . 2 ⊢ 𝜑 | |
2 | biimt 360 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜑 → 𝜓))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜓 ↔ (𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: mt2bi 363 pm4.83 1025 trut 1543 equsv 2002 equsalv 2268 equsal 2425 2sb6rf 2481 sb4b 2483 sbequ8 2509 ralv 3516 ceqsal 3527 ceqsalv 3529 sbceqal 3870 relop 5875 acsfn0 17718 cmpsub 23429 ballotlemodife 34462 bj-equsvt 36745 bj-sbievw1 36811 bj-sbievw 36813 bj-ralvw 36845 wl-2mintru2 37457 wl-equsalvw 37492 wl-equsald 37493 wl-equsaldv 37494 lub0N 39145 glb0N 39149 |
Copyright terms: Public domain | W3C validator |