MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  a1bi Structured version   Visualization version   GIF version

Theorem a1bi 363
Description: Inference introducing a theorem as an antecedent. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 11-Nov-2012.)
Hypothesis
Ref Expression
a1bi.1 𝜑
Assertion
Ref Expression
a1bi (𝜓 ↔ (𝜑𝜓))

Proof of Theorem a1bi
StepHypRef Expression
1 a1bi.1 . 2 𝜑
2 biimt 361 . 2 (𝜑 → (𝜓 ↔ (𝜑𝜓)))
31, 2ax-mp 5 1 (𝜓 ↔ (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  mt2bi  364  pm4.83  1022  trut  1545  equsv  2006  equsalv  2259  equsal  2417  2sb6rf  2473  sb4b  2475  sb4bOLD  2476  sbequ8  2505  ralv  3456  sbceqal  3782  relop  5759  acsfn0  17369  cmpsub  22551  ballotlemodife  32464  bj-equsvt  34961  bj-sbievw1  35029  bj-sbievw  35031  bj-ralvw  35064  wl-2mintru2  35662  wl-equsalvw  35697  wl-equsald  35698  lub0N  37203  glb0N  37207
  Copyright terms: Public domain W3C validator