MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  a1bi Structured version   Visualization version   GIF version

Theorem a1bi 363
Description: Inference introducing a theorem as an antecedent. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 11-Nov-2012.)
Hypothesis
Ref Expression
a1bi.1 𝜑
Assertion
Ref Expression
a1bi (𝜓 ↔ (𝜑𝜓))

Proof of Theorem a1bi
StepHypRef Expression
1 a1bi.1 . 2 𝜑
2 biimt 361 . 2 (𝜑 → (𝜓 ↔ (𝜑𝜓)))
31, 2ax-mp 5 1 (𝜓 ↔ (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  mt2bi  364  pm4.83  1024  trut  1548  equsv  2007  equsalv  2259  equsal  2417  2sb6rf  2473  sb4b  2475  sbequ8  2501  ralv  3499  ceqsal  3510  ceqsalv  3512  sbceqal  3844  relop  5851  acsfn0  17604  cmpsub  22904  ballotlemodife  33496  bj-equsvt  35657  bj-sbievw1  35724  bj-sbievw  35726  bj-ralvw  35759  wl-2mintru2  36372  wl-equsalvw  36407  wl-equsald  36408  lub0N  38059  glb0N  38063
  Copyright terms: Public domain W3C validator