| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > a1bi | Structured version Visualization version GIF version | ||
| Description: Inference introducing a theorem as an antecedent. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 11-Nov-2012.) |
| Ref | Expression |
|---|---|
| a1bi.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| a1bi | ⊢ (𝜓 ↔ (𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | a1bi.1 | . 2 ⊢ 𝜑 | |
| 2 | biimt 360 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜑 → 𝜓))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜓 ↔ (𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: mt2bi 363 pm4.83 1026 trut 1546 equsv 2003 equsalv 2268 equsal 2415 2sb6rf 2471 sb4b 2473 sbequ8 2499 ralv 3465 ceqsal 3476 ceqsalv 3478 sbceqal 3806 relop 5797 acsfn0 17584 cmpsub 23303 ballotlemodife 34465 bj-equsvt 36752 bj-sbievw1 36818 bj-sbievw 36820 bj-ralvw 36852 wl-2mintru2 37464 wl-equsalvw 37511 wl-equsald 37512 wl-equsaldv 37513 lub0N 39167 glb0N 39171 |
| Copyright terms: Public domain | W3C validator |