Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > a1bi | Structured version Visualization version GIF version |
Description: Inference introducing a theorem as an antecedent. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 11-Nov-2012.) |
Ref | Expression |
---|---|
a1bi.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
a1bi | ⊢ (𝜓 ↔ (𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | a1bi.1 | . 2 ⊢ 𝜑 | |
2 | biimt 360 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜑 → 𝜓))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜓 ↔ (𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: mt2bi 363 pm4.83 1021 trut 1545 equsv 2007 equsalv 2262 equsal 2417 2sb6rf 2473 sb4b 2475 sb4bOLD 2476 sbequ8 2505 ralv 3446 sbceqal 3778 relop 5748 acsfn0 17286 cmpsub 22459 ballotlemodife 32364 bj-equsvt 34888 bj-sbievw1 34956 bj-sbievw 34958 bj-ralvw 34991 wl-2mintru2 35589 wl-equsalvw 35624 wl-equsald 35625 lub0N 37130 glb0N 37134 |
Copyright terms: Public domain | W3C validator |