![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > a1bi | Structured version Visualization version GIF version |
Description: Inference introducing a theorem as an antecedent. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 11-Nov-2012.) |
Ref | Expression |
---|---|
a1bi.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
a1bi | ⊢ (𝜓 ↔ (𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | a1bi.1 | . 2 ⊢ 𝜑 | |
2 | biimt 361 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜑 → 𝜓))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜓 ↔ (𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: mt2bi 364 pm4.83 1024 trut 1548 equsv 2007 equsalv 2259 equsal 2417 2sb6rf 2473 sb4b 2475 sbequ8 2501 ralv 3499 ceqsal 3510 ceqsalv 3512 sbceqal 3844 relop 5851 acsfn0 17604 cmpsub 22904 ballotlemodife 33496 bj-equsvt 35657 bj-sbievw1 35724 bj-sbievw 35726 bj-ralvw 35759 wl-2mintru2 36372 wl-equsalvw 36407 wl-equsald 36408 lub0N 38059 glb0N 38063 |
Copyright terms: Public domain | W3C validator |