MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  a1bi Structured version   Visualization version   GIF version

Theorem a1bi 362
Description: Inference introducing a theorem as an antecedent. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 11-Nov-2012.)
Hypothesis
Ref Expression
a1bi.1 𝜑
Assertion
Ref Expression
a1bi (𝜓 ↔ (𝜑𝜓))

Proof of Theorem a1bi
StepHypRef Expression
1 a1bi.1 . 2 𝜑
2 biimt 360 . 2 (𝜑 → (𝜓 ↔ (𝜑𝜓)))
31, 2ax-mp 5 1 (𝜓 ↔ (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  mt2bi  363  pm4.83  1026  trut  1546  equsv  2003  equsalv  2268  equsal  2415  2sb6rf  2471  sb4b  2473  sbequ8  2499  ralv  3465  ceqsal  3476  ceqsalv  3478  sbceqal  3806  relop  5797  acsfn0  17584  cmpsub  23303  ballotlemodife  34465  bj-equsvt  36752  bj-sbievw1  36818  bj-sbievw  36820  bj-ralvw  36852  wl-2mintru2  37464  wl-equsalvw  37511  wl-equsald  37512  wl-equsaldv  37513  lub0N  39167  glb0N  39171
  Copyright terms: Public domain W3C validator