| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > a1bi | Structured version Visualization version GIF version | ||
| Description: Inference introducing a theorem as an antecedent. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 11-Nov-2012.) |
| Ref | Expression |
|---|---|
| a1bi.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| a1bi | ⊢ (𝜓 ↔ (𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | a1bi.1 | . 2 ⊢ 𝜑 | |
| 2 | biimt 360 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜑 → 𝜓))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜓 ↔ (𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: mt2bi 363 pm4.83 1026 trut 1545 equsv 2001 equsalv 2266 equsal 2420 2sb6rf 2476 sb4b 2478 sbequ8 2504 ralv 3485 ceqsal 3496 ceqsalv 3498 sbceqal 3825 relop 5827 acsfn0 17657 cmpsub 23323 ballotlemodife 34438 bj-equsvt 36718 bj-sbievw1 36784 bj-sbievw 36786 bj-ralvw 36818 wl-2mintru2 37430 wl-equsalvw 37477 wl-equsald 37478 wl-equsaldv 37479 lub0N 39128 glb0N 39132 |
| Copyright terms: Public domain | W3C validator |