Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > a1bi | Structured version Visualization version GIF version |
Description: Inference introducing a theorem as an antecedent. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 11-Nov-2012.) |
Ref | Expression |
---|---|
a1bi.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
a1bi | ⊢ (𝜓 ↔ (𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | a1bi.1 | . 2 ⊢ 𝜑 | |
2 | biimt 361 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜑 → 𝜓))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜓 ↔ (𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: mt2bi 364 pm4.83 1022 trut 1545 equsv 2006 equsalv 2259 equsal 2417 2sb6rf 2473 sb4b 2475 sb4bOLD 2476 sbequ8 2505 ralv 3456 sbceqal 3782 relop 5759 acsfn0 17369 cmpsub 22551 ballotlemodife 32464 bj-equsvt 34961 bj-sbievw1 35029 bj-sbievw 35031 bj-ralvw 35064 wl-2mintru2 35662 wl-equsalvw 35697 wl-equsald 35698 lub0N 37203 glb0N 37207 |
Copyright terms: Public domain | W3C validator |