|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > a1bi | Structured version Visualization version GIF version | ||
| Description: Inference introducing a theorem as an antecedent. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 11-Nov-2012.) | 
| Ref | Expression | 
|---|---|
| a1bi.1 | ⊢ 𝜑 | 
| Ref | Expression | 
|---|---|
| a1bi | ⊢ (𝜓 ↔ (𝜑 → 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | a1bi.1 | . 2 ⊢ 𝜑 | |
| 2 | biimt 360 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜑 → 𝜓))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜓 ↔ (𝜑 → 𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 | 
| This theorem is referenced by: mt2bi 363 pm4.83 1027 trut 1546 equsv 2002 equsalv 2267 equsal 2422 2sb6rf 2478 sb4b 2480 sbequ8 2506 ralv 3508 ceqsal 3519 ceqsalv 3521 sbceqal 3851 relop 5861 acsfn0 17703 cmpsub 23408 ballotlemodife 34500 bj-equsvt 36780 bj-sbievw1 36846 bj-sbievw 36848 bj-ralvw 36880 wl-2mintru2 37492 wl-equsalvw 37539 wl-equsald 37540 wl-equsaldv 37541 lub0N 39190 glb0N 39194 | 
| Copyright terms: Public domain | W3C validator |