MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  a1bi Structured version   Visualization version   GIF version

Theorem a1bi 363
Description: Inference introducing a theorem as an antecedent. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 11-Nov-2012.)
Hypothesis
Ref Expression
a1bi.1 𝜑
Assertion
Ref Expression
a1bi (𝜓 ↔ (𝜑𝜓))

Proof of Theorem a1bi
StepHypRef Expression
1 a1bi.1 . 2 𝜑
2 biimt 361 . 2 (𝜑 → (𝜓 ↔ (𝜑𝜓)))
31, 2ax-mp 5 1 (𝜓 ↔ (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  mt2bi  364  pm4.83  1022  trut  1548  equsv  2010  equsalv  2263  equsal  2419  2sb6rf  2475  sb4b  2477  sb4bOLD  2478  sbequ8  2507  ralv  3455  sbceqal  3787  relop  5758  acsfn0  17367  cmpsub  22549  ballotlemodife  32460  bj-equsvt  34957  bj-sbievw1  35025  bj-sbievw  35027  bj-ralvw  35060  wl-2mintru2  35658  wl-equsalvw  35693  wl-equsald  35694  lub0N  37199  glb0N  37203
  Copyright terms: Public domain W3C validator