MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  a1bi Structured version   Visualization version   GIF version

Theorem a1bi 362
Description: Inference introducing a theorem as an antecedent. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 11-Nov-2012.)
Hypothesis
Ref Expression
a1bi.1 𝜑
Assertion
Ref Expression
a1bi (𝜓 ↔ (𝜑𝜓))

Proof of Theorem a1bi
StepHypRef Expression
1 a1bi.1 . 2 𝜑
2 biimt 360 . 2 (𝜑 → (𝜓 ↔ (𝜑𝜓)))
31, 2ax-mp 5 1 (𝜓 ↔ (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  mt2bi  363  pm4.83  1025  trut  1543  equsv  2002  equsalv  2268  equsal  2425  2sb6rf  2481  sb4b  2483  sbequ8  2509  ralv  3516  ceqsal  3527  ceqsalv  3529  sbceqal  3870  relop  5875  acsfn0  17718  cmpsub  23429  ballotlemodife  34462  bj-equsvt  36745  bj-sbievw1  36811  bj-sbievw  36813  bj-ralvw  36845  wl-2mintru2  37457  wl-equsalvw  37492  wl-equsald  37493  wl-equsaldv  37494  lub0N  39145  glb0N  39149
  Copyright terms: Public domain W3C validator