| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > a1bi | Structured version Visualization version GIF version | ||
| Description: Inference introducing a theorem as an antecedent. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 11-Nov-2012.) |
| Ref | Expression |
|---|---|
| a1bi.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| a1bi | ⊢ (𝜓 ↔ (𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | a1bi.1 | . 2 ⊢ 𝜑 | |
| 2 | biimt 360 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜑 → 𝜓))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜓 ↔ (𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: mt2bi 363 pm4.83 1026 trut 1547 equsv 2004 equsalv 2270 equsal 2417 2sb6rf 2473 sb4b 2475 sbequ8 2501 ralv 3463 ceqsal 3474 ceqsalv 3476 sbceqal 3803 relop 5790 acsfn0 17566 cmpsub 23316 ballotlemodife 34509 bj-equsvt 36819 bj-sbievw1 36885 bj-sbievw 36887 bj-ralvw 36919 wl-2mintru2 37531 wl-equsalvw 37578 wl-equsald 37579 wl-equsaldv 37580 lub0N 39234 glb0N 39238 |
| Copyright terms: Public domain | W3C validator |