| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > a1bi | Structured version Visualization version GIF version | ||
| Description: Inference introducing a theorem as an antecedent. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 11-Nov-2012.) |
| Ref | Expression |
|---|---|
| a1bi.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| a1bi | ⊢ (𝜓 ↔ (𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | a1bi.1 | . 2 ⊢ 𝜑 | |
| 2 | biimt 360 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜑 → 𝜓))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜓 ↔ (𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: mt2bi 363 pm4.83 1026 trut 1546 equsv 2003 equsalv 2268 equsal 2415 2sb6rf 2471 sb4b 2473 sbequ8 2499 ralv 3474 ceqsal 3485 ceqsalv 3487 sbceqal 3815 relop 5814 acsfn0 17621 cmpsub 23287 ballotlemodife 34489 bj-equsvt 36767 bj-sbievw1 36833 bj-sbievw 36835 bj-ralvw 36867 wl-2mintru2 37479 wl-equsalvw 37526 wl-equsald 37527 wl-equsaldv 37528 lub0N 39182 glb0N 39186 |
| Copyright terms: Public domain | W3C validator |