Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > a1bi | Structured version Visualization version GIF version |
Description: Inference introducing a theorem as an antecedent. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 11-Nov-2012.) |
Ref | Expression |
---|---|
a1bi.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
a1bi | ⊢ (𝜓 ↔ (𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | a1bi.1 | . 2 ⊢ 𝜑 | |
2 | biimt 361 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜑 → 𝜓))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜓 ↔ (𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: mt2bi 364 pm4.83 1022 trut 1548 equsv 2010 equsalv 2263 equsal 2419 2sb6rf 2475 sb4b 2477 sb4bOLD 2478 sbequ8 2507 ralv 3455 sbceqal 3787 relop 5758 acsfn0 17367 cmpsub 22549 ballotlemodife 32460 bj-equsvt 34957 bj-sbievw1 35025 bj-sbievw 35027 bj-ralvw 35060 wl-2mintru2 35658 wl-equsalvw 35693 wl-equsald 35694 lub0N 37199 glb0N 37203 |
Copyright terms: Public domain | W3C validator |