| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nanbi12d | Structured version Visualization version GIF version | ||
| Description: Join two logical equivalences with anti-conjunction. (Contributed by Scott Fenton, 2-Jan-2018.) |
| Ref | Expression |
|---|---|
| nanbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| nanbi12d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| nanbi12d | ⊢ (𝜑 → ((𝜓 ⊼ 𝜃) ↔ (𝜒 ⊼ 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nanbid.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | nanbi12d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
| 3 | nanbi12 1503 | . 2 ⊢ (((𝜓 ↔ 𝜒) ∧ (𝜃 ↔ 𝜏)) → ((𝜓 ⊼ 𝜃) ↔ (𝜒 ⊼ 𝜏))) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → ((𝜓 ⊼ 𝜃) ↔ (𝜒 ⊼ 𝜏))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ⊼ wnan 1491 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-nan 1492 |
| This theorem is referenced by: nanass 1510 |
| Copyright terms: Public domain | W3C validator |