Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nanbi12d | Structured version Visualization version GIF version |
Description: Join two logical equivalences with anti-conjunction. (Contributed by Scott Fenton, 2-Jan-2018.) |
Ref | Expression |
---|---|
nanbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
nanbi12d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Ref | Expression |
---|---|
nanbi12d | ⊢ (𝜑 → ((𝜓 ⊼ 𝜃) ↔ (𝜒 ⊼ 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nanbid.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | nanbi12d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
3 | nanbi12 1499 | . 2 ⊢ (((𝜓 ↔ 𝜒) ∧ (𝜃 ↔ 𝜏)) → ((𝜓 ⊼ 𝜃) ↔ (𝜒 ⊼ 𝜏))) | |
4 | 1, 2, 3 | syl2anc 587 | 1 ⊢ (𝜑 → ((𝜓 ⊼ 𝜃) ↔ (𝜒 ⊼ 𝜏))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ⊼ wnan 1487 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-nan 1488 |
This theorem is referenced by: nanass 1506 |
Copyright terms: Public domain | W3C validator |