MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nanbi2d Structured version   Visualization version   GIF version

Theorem nanbi2d 1503
Description: Introduce a left anti-conjunct to both sides of a logical equivalence. (Contributed by SF, 2-Jan-2018.)
Hypothesis
Ref Expression
nanbid.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
nanbi2d (𝜑 → ((𝜃𝜓) ↔ (𝜃𝜒)))

Proof of Theorem nanbi2d
StepHypRef Expression
1 nanbid.1 . 2 (𝜑 → (𝜓𝜒))
2 nanbi2 1497 . 2 ((𝜓𝜒) → ((𝜃𝜓) ↔ (𝜃𝜒)))
31, 2syl 17 1 (𝜑 → ((𝜃𝜓) ↔ (𝜃𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wnan 1486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-nan 1487
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator