|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > nanbi2d | Structured version Visualization version GIF version | ||
| Description: Introduce a left anti-conjunct to both sides of a logical equivalence. (Contributed by SF, 2-Jan-2018.) | 
| Ref | Expression | 
|---|---|
| nanbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | 
| Ref | Expression | 
|---|---|
| nanbi2d | ⊢ (𝜑 → ((𝜃 ⊼ 𝜓) ↔ (𝜃 ⊼ 𝜒))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nanbid.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | nanbi2 1501 | . 2 ⊢ ((𝜓 ↔ 𝜒) → ((𝜃 ⊼ 𝜓) ↔ (𝜃 ⊼ 𝜒))) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ((𝜃 ⊼ 𝜓) ↔ (𝜃 ⊼ 𝜒))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ⊼ wnan 1490 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-nan 1491 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |