|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > nanbi2 | Structured version Visualization version GIF version | ||
| Description: Introduce a left anti-conjunct to both sides of a logical equivalence. (Contributed by Anthony Hart, 1-Sep-2011.) (Proof shortened by SF, 2-Jan-2018.) | 
| Ref | Expression | 
|---|---|
| nanbi2 | ⊢ ((𝜑 ↔ 𝜓) → ((𝜒 ⊼ 𝜑) ↔ (𝜒 ⊼ 𝜓))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nanbi1 1501 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 ⊼ 𝜒) ↔ (𝜓 ⊼ 𝜒))) | |
| 2 | nancom 1496 | . 2 ⊢ ((𝜒 ⊼ 𝜑) ↔ (𝜑 ⊼ 𝜒)) | |
| 3 | nancom 1496 | . 2 ⊢ ((𝜒 ⊼ 𝜓) ↔ (𝜓 ⊼ 𝜒)) | |
| 4 | 1, 2, 3 | 3bitr4g 314 | 1 ⊢ ((𝜑 ↔ 𝜓) → ((𝜒 ⊼ 𝜑) ↔ (𝜒 ⊼ 𝜓))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ⊼ wnan 1491 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-nan 1492 | 
| This theorem is referenced by: nanbi12 1503 nanbi2i 1505 nanbi2d 1508 nanass 1510 | 
| Copyright terms: Public domain | W3C validator |