Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nanbi2 | Structured version Visualization version GIF version |
Description: Introduce a left anti-conjunct to both sides of a logical equivalence. (Contributed by Anthony Hart, 1-Sep-2011.) (Proof shortened by SF, 2-Jan-2018.) |
Ref | Expression |
---|---|
nanbi2 | ⊢ ((𝜑 ↔ 𝜓) → ((𝜒 ⊼ 𝜑) ↔ (𝜒 ⊼ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nanbi1 1497 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 ⊼ 𝜒) ↔ (𝜓 ⊼ 𝜒))) | |
2 | nancom 1492 | . 2 ⊢ ((𝜒 ⊼ 𝜑) ↔ (𝜑 ⊼ 𝜒)) | |
3 | nancom 1492 | . 2 ⊢ ((𝜒 ⊼ 𝜓) ↔ (𝜓 ⊼ 𝜒)) | |
4 | 1, 2, 3 | 3bitr4g 317 | 1 ⊢ ((𝜑 ↔ 𝜓) → ((𝜒 ⊼ 𝜑) ↔ (𝜒 ⊼ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ⊼ wnan 1487 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-nan 1488 |
This theorem is referenced by: nanbi12 1499 nanbi2i 1501 nanbi2d 1504 nanass 1506 |
Copyright terms: Public domain | W3C validator |