MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nanbi2 Structured version   Visualization version   GIF version

Theorem nanbi2 1497
Description: Introduce a left anti-conjunct to both sides of a logical equivalence. (Contributed by Anthony Hart, 1-Sep-2011.) (Proof shortened by SF, 2-Jan-2018.)
Assertion
Ref Expression
nanbi2 ((𝜑𝜓) → ((𝜒𝜑) ↔ (𝜒𝜓)))

Proof of Theorem nanbi2
StepHypRef Expression
1 nanbi1 1496 . 2 ((𝜑𝜓) → ((𝜑𝜒) ↔ (𝜓𝜒)))
2 nancom 1491 . 2 ((𝜒𝜑) ↔ (𝜑𝜒))
3 nancom 1491 . 2 ((𝜒𝜓) ↔ (𝜓𝜒))
41, 2, 33bitr4g 314 1 ((𝜑𝜓) → ((𝜒𝜑) ↔ (𝜒𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wnan 1486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-nan 1487
This theorem is referenced by:  nanbi12  1498  nanbi2i  1500  nanbi2d  1503  nanass  1505
  Copyright terms: Public domain W3C validator