Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nebi | Structured version Visualization version GIF version |
Description: Contraposition law for inequality. (Contributed by NM, 28-Dec-2008.) |
Ref | Expression |
---|---|
nebi | ⊢ ((𝐴 = 𝐵 ↔ 𝐶 = 𝐷) ↔ (𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ ((𝐴 = 𝐵 ↔ 𝐶 = 𝐷) → (𝐴 = 𝐵 ↔ 𝐶 = 𝐷)) | |
2 | 1 | necon3bid 2987 | . 2 ⊢ ((𝐴 = 𝐵 ↔ 𝐶 = 𝐷) → (𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷)) |
3 | id 22 | . . 3 ⊢ ((𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷) → (𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷)) | |
4 | 3 | necon4bid 2988 | . 2 ⊢ ((𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷) → (𝐴 = 𝐵 ↔ 𝐶 = 𝐷)) |
5 | 2, 4 | impbii 208 | 1 ⊢ ((𝐴 = 𝐵 ↔ 𝐶 = 𝐷) ↔ (𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ≠ wne 2942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2943 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |