| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nebi | Structured version Visualization version GIF version | ||
| Description: Contraposition law for inequality. (Contributed by NM, 28-Dec-2008.) |
| Ref | Expression |
|---|---|
| nebi | ⊢ ((𝐴 = 𝐵 ↔ 𝐶 = 𝐷) ↔ (𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . 3 ⊢ ((𝐴 = 𝐵 ↔ 𝐶 = 𝐷) → (𝐴 = 𝐵 ↔ 𝐶 = 𝐷)) | |
| 2 | 1 | necon3bid 2970 | . 2 ⊢ ((𝐴 = 𝐵 ↔ 𝐶 = 𝐷) → (𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷)) |
| 3 | id 22 | . . 3 ⊢ ((𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷) → (𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷)) | |
| 4 | 3 | necon4bid 2971 | . 2 ⊢ ((𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷) → (𝐴 = 𝐵 ↔ 𝐶 = 𝐷)) |
| 5 | 2, 4 | impbii 209 | 1 ⊢ ((𝐴 = 𝐵 ↔ 𝐶 = 𝐷) ↔ (𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ≠ wne 2926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2927 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |