![]() |
Metamath
Proof Explorer Theorem List (p. 31 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | necomi 3001 | Inference from commutative law for inequality. (Contributed by NM, 17-Oct-2012.) |
⊢ 𝐴 ≠ 𝐵 ⇒ ⊢ 𝐵 ≠ 𝐴 | ||
Theorem | necomd 3002 | Deduction from commutative law for inequality. (Contributed by NM, 12-Feb-2008.) |
⊢ (𝜑 → 𝐴 ≠ 𝐵) ⇒ ⊢ (𝜑 → 𝐵 ≠ 𝐴) | ||
Theorem | nesym 3003 | Characterization of inequality in terms of reversed equality (see bicom 222). (Contributed by BJ, 7-Jul-2018.) |
⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐵 = 𝐴) | ||
Theorem | nesymi 3004 | Inference associated with nesym 3003. (Contributed by BJ, 7-Jul-2018.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
⊢ 𝐴 ≠ 𝐵 ⇒ ⊢ ¬ 𝐵 = 𝐴 | ||
Theorem | nesymir 3005 | Inference associated with nesym 3003. (Contributed by BJ, 7-Jul-2018.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
⊢ ¬ 𝐴 = 𝐵 ⇒ ⊢ 𝐵 ≠ 𝐴 | ||
Theorem | neeq1d 3006 | Deduction for inequality. (Contributed by NM, 25-Oct-1999.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶)) | ||
Theorem | neeq2d 3007 | Deduction for inequality. (Contributed by NM, 25-Oct-1999.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵)) | ||
Theorem | neeq12d 3008 | Deduction for inequality. (Contributed by NM, 24-Jul-2012.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐷)) | ||
Theorem | neeq1 3009 | Equality theorem for inequality. (Contributed by NM, 19-Nov-1994.) (Proof shortened by Wolf Lammen, 18-Nov-2019.) |
⊢ (𝐴 = 𝐵 → (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶)) | ||
Theorem | neeq2 3010 | Equality theorem for inequality. (Contributed by NM, 19-Nov-1994.) (Proof shortened by Wolf Lammen, 18-Nov-2019.) |
⊢ (𝐴 = 𝐵 → (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵)) | ||
Theorem | neeq1i 3011 | Inference for inequality. (Contributed by NM, 29-Apr-2005.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶) | ||
Theorem | neeq2i 3012 | Inference for inequality. (Contributed by NM, 29-Apr-2005.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵) | ||
Theorem | neeq12i 3013 | Inference for inequality. (Contributed by NM, 24-Jul-2012.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
⊢ 𝐴 = 𝐵 & ⊢ 𝐶 = 𝐷 ⇒ ⊢ (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐷) | ||
Theorem | eqnetrd 3014 | Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐵 ≠ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ≠ 𝐶) | ||
Theorem | eqnetrrd 3015 | Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐴 ≠ 𝐶) ⇒ ⊢ (𝜑 → 𝐵 ≠ 𝐶) | ||
Theorem | neeqtrd 3016 | Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ≠ 𝐶) | ||
Theorem | eqnetri 3017 | Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
⊢ 𝐴 = 𝐵 & ⊢ 𝐵 ≠ 𝐶 ⇒ ⊢ 𝐴 ≠ 𝐶 | ||
Theorem | eqnetrri 3018 | Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
⊢ 𝐴 = 𝐵 & ⊢ 𝐴 ≠ 𝐶 ⇒ ⊢ 𝐵 ≠ 𝐶 | ||
Theorem | neeqtri 3019 | Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
⊢ 𝐴 ≠ 𝐵 & ⊢ 𝐵 = 𝐶 ⇒ ⊢ 𝐴 ≠ 𝐶 | ||
Theorem | neeqtrri 3020 | Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
⊢ 𝐴 ≠ 𝐵 & ⊢ 𝐶 = 𝐵 ⇒ ⊢ 𝐴 ≠ 𝐶 | ||
Theorem | neeqtrrd 3021 | Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ≠ 𝐶) | ||
Theorem | eqnetrrid 3022 | A chained equality inference for inequality. (Contributed by NM, 6-Jun-2012.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
⊢ 𝐵 = 𝐴 & ⊢ (𝜑 → 𝐵 ≠ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ≠ 𝐶) | ||
Theorem | 3netr3d 3023 | Substitution of equality into both sides of an inequality. (Contributed by NM, 24-Jul-2012.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 𝐴 = 𝐶) & ⊢ (𝜑 → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → 𝐶 ≠ 𝐷) | ||
Theorem | 3netr4d 3024 | Substitution of equality into both sides of an inequality. (Contributed by NM, 24-Jul-2012.) (Proof shortened by Wolf Lammen, 21-Nov-2019.) |
⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐴) & ⊢ (𝜑 → 𝐷 = 𝐵) ⇒ ⊢ (𝜑 → 𝐶 ≠ 𝐷) | ||
Theorem | 3netr3g 3025 | Substitution of equality into both sides of an inequality. (Contributed by NM, 24-Jul-2012.) |
⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ 𝐴 = 𝐶 & ⊢ 𝐵 = 𝐷 ⇒ ⊢ (𝜑 → 𝐶 ≠ 𝐷) | ||
Theorem | 3netr4g 3026 | Substitution of equality into both sides of an inequality. (Contributed by NM, 14-Jun-2012.) |
⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ 𝐶 = 𝐴 & ⊢ 𝐷 = 𝐵 ⇒ ⊢ (𝜑 → 𝐶 ≠ 𝐷) | ||
Theorem | nebi 3027 | Contraposition law for inequality. (Contributed by NM, 28-Dec-2008.) |
⊢ ((𝐴 = 𝐵 ↔ 𝐶 = 𝐷) ↔ (𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷)) | ||
Theorem | pm13.18 3028 | Theorem *13.18 in [WhiteheadRussell] p. 178. (Contributed by Andrew Salmon, 3-Jun-2011.) (Proof shortened by Wolf Lammen, 29-Oct-2024.) |
⊢ ((𝐴 = 𝐵 ∧ 𝐴 ≠ 𝐶) → 𝐵 ≠ 𝐶) | ||
Theorem | pm13.181 3029 | Theorem *13.181 in [WhiteheadRussell] p. 178. (Contributed by Andrew Salmon, 3-Jun-2011.) (Proof shortened by Wolf Lammen, 30-Oct-2024.) |
⊢ ((𝐴 = 𝐵 ∧ 𝐵 ≠ 𝐶) → 𝐴 ≠ 𝐶) | ||
Theorem | pm13.181OLD 3030 | Obsolete version of pm13.181 3029 as of 30-Oct-2024. (Contributed by Andrew Salmon, 3-Jun-2011.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ ((𝐴 = 𝐵 ∧ 𝐵 ≠ 𝐶) → 𝐴 ≠ 𝐶) | ||
Theorem | pm2.61ine 3031 | Inference eliminating an inequality in an antecedent. (Contributed by NM, 16-Jan-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
⊢ (𝐴 = 𝐵 → 𝜑) & ⊢ (𝐴 ≠ 𝐵 → 𝜑) ⇒ ⊢ 𝜑 | ||
Theorem | pm2.21ddne 3032 | A contradiction implies anything. Equality/inequality deduction form. (Contributed by David Moews, 28-Feb-2017.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | pm2.61ne 3033 | Deduction eliminating an inequality in an antecedent. (Contributed by NM, 24-May-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
⊢ (𝐴 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝜓) & ⊢ (𝜑 → 𝜒) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | pm2.61dne 3034 | Deduction eliminating an inequality in an antecedent. (Contributed by NM, 1-Jun-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) & ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | pm2.61dane 3035 | Deduction eliminating an inequality in an antecedent. (Contributed by NM, 30-Nov-2011.) |
⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝜓) & ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | pm2.61da2ne 3036 | Deduction eliminating two inequalities in an antecedent. (Contributed by NM, 29-May-2013.) |
⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝜓) & ⊢ ((𝜑 ∧ 𝐶 = 𝐷) → 𝜓) & ⊢ ((𝜑 ∧ (𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷)) → 𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | pm2.61da3ne 3037 | Deduction eliminating three inequalities in an antecedent. (Contributed by NM, 15-Jun-2013.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝜓) & ⊢ ((𝜑 ∧ 𝐶 = 𝐷) → 𝜓) & ⊢ ((𝜑 ∧ 𝐸 = 𝐹) → 𝜓) & ⊢ ((𝜑 ∧ (𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷 ∧ 𝐸 ≠ 𝐹)) → 𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | pm2.61iine 3038 | Equality version of pm2.61ii 183. (Contributed by Scott Fenton, 13-Jun-2013.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
⊢ ((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) → 𝜑) & ⊢ (𝐴 = 𝐶 → 𝜑) & ⊢ (𝐵 = 𝐷 → 𝜑) ⇒ ⊢ 𝜑 | ||
Theorem | mteqand 3039 | A modus tollens deduction for inequality. (Contributed by Steven Nguyen, 1-Jun-2023.) |
⊢ (𝜑 → 𝐶 ≠ 𝐷) & ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → 𝐴 ≠ 𝐵) | ||
Theorem | neor 3040 | Logical OR with an equality. (Contributed by NM, 29-Apr-2007.) |
⊢ ((𝐴 = 𝐵 ∨ 𝜓) ↔ (𝐴 ≠ 𝐵 → 𝜓)) | ||
Theorem | neanior 3041 | A De Morgan's law for inequality. (Contributed by NM, 18-May-2007.) |
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷) ↔ ¬ (𝐴 = 𝐵 ∨ 𝐶 = 𝐷)) | ||
Theorem | ne3anior 3042 | A De Morgan's law for inequality. (Contributed by NM, 30-Sep-2013.) |
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷 ∧ 𝐸 ≠ 𝐹) ↔ ¬ (𝐴 = 𝐵 ∨ 𝐶 = 𝐷 ∨ 𝐸 = 𝐹)) | ||
Theorem | neorian 3043 | A De Morgan's law for inequality. (Contributed by NM, 18-May-2007.) |
⊢ ((𝐴 ≠ 𝐵 ∨ 𝐶 ≠ 𝐷) ↔ ¬ (𝐴 = 𝐵 ∧ 𝐶 = 𝐷)) | ||
Theorem | nemtbir 3044 | An inference from an inequality, related to modus tollens. (Contributed by NM, 13-Apr-2007.) |
⊢ 𝐴 ≠ 𝐵 & ⊢ (𝜑 ↔ 𝐴 = 𝐵) ⇒ ⊢ ¬ 𝜑 | ||
Theorem | nelne1 3045 | Two classes are different if they don't contain the same element. (Contributed by NM, 3-Feb-2012.) (Proof shortened by Wolf Lammen, 14-May-2023.) |
⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → 𝐵 ≠ 𝐶) | ||
Theorem | nelne2 3046 | Two classes are different if they don't belong to the same class. (Contributed by NM, 25-Jun-2012.) (Proof shortened by Wolf Lammen, 14-May-2023.) |
⊢ ((𝐴 ∈ 𝐶 ∧ ¬ 𝐵 ∈ 𝐶) → 𝐴 ≠ 𝐵) | ||
Theorem | nelelne 3047 | Two classes are different if they don't belong to the same class. (Contributed by Rodolfo Medina, 17-Oct-2010.) (Proof shortened by AV, 10-May-2020.) |
⊢ (¬ 𝐴 ∈ 𝐵 → (𝐶 ∈ 𝐵 → 𝐶 ≠ 𝐴)) | ||
Theorem | neneor 3048 | If two classes are different, a third class must be different of at least one of them. (Contributed by Thierry Arnoux, 8-Aug-2020.) |
⊢ (𝐴 ≠ 𝐵 → (𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐶)) | ||
Theorem | nfne 3049 | Bound-variable hypothesis builder for inequality. (Contributed by NM, 10-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2016.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥 𝐴 ≠ 𝐵 | ||
Theorem | nfned 3050 | Bound-variable hypothesis builder for inequality. (Contributed by NM, 10-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2016.) |
⊢ (𝜑 → Ⅎ𝑥𝐴) & ⊢ (𝜑 → Ⅎ𝑥𝐵) ⇒ ⊢ (𝜑 → Ⅎ𝑥 𝐴 ≠ 𝐵) | ||
Theorem | nabbib 3051 | Not equivalent wff's correspond to not equal class abstractions. (Contributed by AV, 7-Apr-2019.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) Definitial form. (Revised by Wolf Lammen, 5-Mar-2025.) |
⊢ ({𝑥 ∣ 𝜑} ≠ {𝑥 ∣ 𝜓} ↔ ∃𝑥(𝜑 ↔ ¬ 𝜓)) | ||
Syntax | wnel 3052 | Extend wff notation to include negated membership. |
wff 𝐴 ∉ 𝐵 | ||
Definition | df-nel 3053 | Define negated membership. (Contributed by NM, 7-Aug-1994.) |
⊢ (𝐴 ∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵) | ||
Theorem | neli 3054 | Inference associated with df-nel 3053. (Contributed by BJ, 7-Jul-2018.) |
⊢ 𝐴 ∉ 𝐵 ⇒ ⊢ ¬ 𝐴 ∈ 𝐵 | ||
Theorem | nelir 3055 | Inference associated with df-nel 3053. (Contributed by BJ, 7-Jul-2018.) |
⊢ ¬ 𝐴 ∈ 𝐵 ⇒ ⊢ 𝐴 ∉ 𝐵 | ||
Theorem | nelcon3d 3056 | Contrapositive law deduction for negated membership. (Contributed by AV, 28-Jan-2020.) |
⊢ (𝜑 → (𝐴 ∈ 𝐵 → 𝐶 ∈ 𝐷)) ⇒ ⊢ (𝜑 → (𝐶 ∉ 𝐷 → 𝐴 ∉ 𝐵)) | ||
Theorem | neleq12d 3057 | Equality theorem for negated membership. (Contributed by FL, 10-Aug-2016.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝐴 ∉ 𝐶 ↔ 𝐵 ∉ 𝐷)) | ||
Theorem | neleq1 3058 | Equality theorem for negated membership. (Contributed by NM, 20-Nov-1994.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
⊢ (𝐴 = 𝐵 → (𝐴 ∉ 𝐶 ↔ 𝐵 ∉ 𝐶)) | ||
Theorem | neleq2 3059 | Equality theorem for negated membership. (Contributed by NM, 20-Nov-1994.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
⊢ (𝐴 = 𝐵 → (𝐶 ∉ 𝐴 ↔ 𝐶 ∉ 𝐵)) | ||
Theorem | nfnel 3060 | Bound-variable hypothesis builder for negated membership. (Contributed by David Abernethy, 26-Jun-2011.) (Revised by Mario Carneiro, 7-Oct-2016.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥 𝐴 ∉ 𝐵 | ||
Theorem | nfneld 3061 | Bound-variable hypothesis builder for negated membership. (Contributed by David Abernethy, 26-Jun-2011.) (Revised by Mario Carneiro, 7-Oct-2016.) |
⊢ (𝜑 → Ⅎ𝑥𝐴) & ⊢ (𝜑 → Ⅎ𝑥𝐵) ⇒ ⊢ (𝜑 → Ⅎ𝑥 𝐴 ∉ 𝐵) | ||
Theorem | nnel 3062 | Negation of negated membership, analogous to nne 2950. (Contributed by Alexander van der Vekens, 18-Jan-2018.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
⊢ (¬ 𝐴 ∉ 𝐵 ↔ 𝐴 ∈ 𝐵) | ||
Theorem | elnelne1 3063 | Two classes are different if they don't contain the same element. (Contributed by AV, 28-Jan-2020.) |
⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∉ 𝐶) → 𝐵 ≠ 𝐶) | ||
Theorem | elnelne2 3064 | Two classes are different if they don't belong to the same class. (Contributed by AV, 28-Jan-2020.) |
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∉ 𝐶) → 𝐴 ≠ 𝐵) | ||
Theorem | pm2.24nel 3065 | A contradiction concerning membership implies anything. (Contributed by Alexander van der Vekens, 25-Jan-2018.) |
⊢ (𝐴 ∈ 𝐵 → (𝐴 ∉ 𝐵 → 𝜑)) | ||
Theorem | pm2.61danel 3066 | Deduction eliminating an elementhood in an antecedent. (Contributed by AV, 5-Dec-2021.) |
⊢ ((𝜑 ∧ 𝐴 ∈ 𝐵) → 𝜓) & ⊢ ((𝜑 ∧ 𝐴 ∉ 𝐵) → 𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
Syntax | wral 3067 | Extend wff notation to include restricted universal quantification. |
wff ∀𝑥 ∈ 𝐴 𝜑 | ||
Definition | df-ral 3068 |
Define restricted universal quantification. Special case of Definition
4.15(3) of [TakeutiZaring] p. 22.
Note: This notation is most often used to express that 𝜑 holds for all elements of a given class 𝐴. For this reading Ⅎ𝑥𝐴 is required, though, for example, asserted when 𝑥 and 𝐴 are disjoint. Should instead 𝐴 depend on 𝑥, you rather focus on those 𝑥 that happen to be contained in the corresponding 𝐴(𝑥). This hardly used interpretation could still occur naturally. For some examples, look at ralndv1 47020 or ralndv2 47021, courtesy of AV. So be careful to either keep 𝐴 independent of 𝑥, or adjust your comments to include such exotic cases. (Contributed by NM, 19-Aug-1993.) |
⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | ||
Theorem | rgen 3069 | Generalization rule for restricted quantification. (Contributed by NM, 19-Nov-1994.) |
⊢ (𝑥 ∈ 𝐴 → 𝜑) ⇒ ⊢ ∀𝑥 ∈ 𝐴 𝜑 | ||
Theorem | ralel 3070 | All elements of a class are elements of the class. (Contributed by AV, 30-Oct-2020.) |
⊢ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐴 | ||
Theorem | rgenw 3071 | Generalization rule for restricted quantification. (Contributed by NM, 18-Jun-2014.) |
⊢ 𝜑 ⇒ ⊢ ∀𝑥 ∈ 𝐴 𝜑 | ||
Theorem | rgen2w 3072 | Generalization rule for restricted quantification. Note that 𝑥 and 𝑦 needn't be distinct. (Contributed by NM, 18-Jun-2014.) |
⊢ 𝜑 ⇒ ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 | ||
Theorem | mprg 3073 | Modus ponens combined with restricted generalization. (Contributed by NM, 10-Aug-2004.) |
⊢ (∀𝑥 ∈ 𝐴 𝜑 → 𝜓) & ⊢ (𝑥 ∈ 𝐴 → 𝜑) ⇒ ⊢ 𝜓 | ||
Theorem | mprgbir 3074 | Modus ponens on biconditional combined with restricted generalization. (Contributed by NM, 21-Mar-2004.) |
⊢ (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) & ⊢ (𝑥 ∈ 𝐴 → 𝜓) ⇒ ⊢ 𝜑 | ||
Theorem | raln 3075 | Restricted universally quantified negation expressed as a universally quantified negation. (Contributed by BJ, 16-Jul-2021.) |
⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∀𝑥 ¬ (𝑥 ∈ 𝐴 ∧ 𝜑)) | ||
Syntax | wrex 3076 | Extend wff notation to include restricted existential quantification. |
wff ∃𝑥 ∈ 𝐴 𝜑 | ||
Definition | df-rex 3077 |
Define restricted existential quantification. Special case of Definition
4.15(4) of [TakeutiZaring] p. 22.
Note: This notation is most often used to express that 𝜑 holds for at least one element of a given class 𝐴. For this reading Ⅎ𝑥𝐴 is required, though, for example, asserted when 𝑥 and 𝐴 are disjoint. Should instead 𝐴 depend on 𝑥, you rather assert at least one 𝑥 fulfilling 𝜑 happens to be contained in the corresponding 𝐴(𝑥). This interpretation is rarely needed (see also df-ral 3068). (Contributed by NM, 30-Aug-1993.) |
⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | ||
Theorem | ralnex 3078 | Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997.) (Proof shortened by BJ, 16-Jul-2021.) |
⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜑) | ||
Theorem | dfrex2 3079 | Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997.) (Proof shortened by Wolf Lammen, 26-Nov-2019.) |
⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) | ||
Theorem | nrex 3080 | Inference adding restricted existential quantifier to negated wff. (Contributed by NM, 16-Oct-2003.) |
⊢ (𝑥 ∈ 𝐴 → ¬ 𝜓) ⇒ ⊢ ¬ ∃𝑥 ∈ 𝐴 𝜓 | ||
Theorem | alral 3081 | Universal quantification implies restricted quantification. (Contributed by NM, 20-Oct-2006.) |
⊢ (∀𝑥𝜑 → ∀𝑥 ∈ 𝐴 𝜑) | ||
Theorem | rexex 3082 | Restricted existence implies existence. (Contributed by NM, 11-Nov-1995.) |
⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥𝜑) | ||
Theorem | rextru 3083 | Two ways of expressing that a class has at least one element. (Contributed by Zhi Wang, 23-Sep-2024.) |
⊢ (∃𝑥 𝑥 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 ⊤) | ||
Theorem | ralimi2 3084 | Inference quantifying both antecedent and consequent. (Contributed by NM, 22-Feb-2004.) |
⊢ ((𝑥 ∈ 𝐴 → 𝜑) → (𝑥 ∈ 𝐵 → 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐵 𝜓) | ||
Theorem | reximi2 3085 | Inference quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 8-Nov-2004.) |
⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐵 ∧ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜓) | ||
Theorem | ralimia 3086 | Inference quantifying both antecedent and consequent. (Contributed by NM, 19-Jul-1996.) |
⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓) | ||
Theorem | reximia 3087 | Inference quantifying both antecedent and consequent. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Wolf Lammen, 31-Oct-2024.) |
⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) | ||
Theorem | ralimiaa 3088 | Inference quantifying both antecedent and consequent. (Contributed by NM, 4-Aug-2007.) |
⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓) | ||
Theorem | ralimi 3089 | Inference quantifying both antecedent and consequent, with strong hypothesis. (Contributed by NM, 4-Mar-1997.) |
⊢ (𝜑 → 𝜓) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓) | ||
Theorem | reximi 3090 | Inference quantifying both antecedent and consequent. (Contributed by NM, 18-Oct-1996.) |
⊢ (𝜑 → 𝜓) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) | ||
Theorem | ral2imi 3091 | Inference quantifying antecedent, nested antecedent, and consequent, with a strong hypothesis. (Contributed by NM, 19-Dec-2006.) Allow shortening of ralim 3092. (Revised by Wolf Lammen, 1-Dec-2019.) |
⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | ralim 3092 | Distribution of restricted quantification over implication. (Contributed by NM, 9-Feb-1997.) (Proof shortened by Wolf Lammen, 1-Dec-2019.) |
⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) | ||
Theorem | rexim 3093 | Theorem 19.22 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 22-Nov-1994.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) | ||
Theorem | reximiaOLD 3094 | Obsolete version of reximia 3087 as of 31-Oct-2024. (Contributed by NM, 10-Feb-1997.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) | ||
Theorem | ralbii2 3095 | Inference adding different restricted universal quantifiers to each side of an equivalence. (Contributed by NM, 15-Aug-2005.) |
⊢ ((𝑥 ∈ 𝐴 → 𝜑) ↔ (𝑥 ∈ 𝐵 → 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜓) | ||
Theorem | rexbii2 3096 | Inference adding different restricted existential quantifiers to each side of an equivalence. (Contributed by NM, 4-Feb-2004.) |
⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜓) | ||
Theorem | ralbiia 3097 | Inference adding restricted universal quantifier to both sides of an equivalence. (Contributed by NM, 26-Nov-2000.) |
⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) | ||
Theorem | rexbiia 3098 | Inference adding restricted existential quantifier to both sides of an equivalence. (Contributed by NM, 26-Oct-1999.) |
⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜓) | ||
Theorem | ralbii 3099 | Inference adding restricted universal quantifier to both sides of an equivalence. (Contributed by NM, 23-Nov-1994.) (Revised by Mario Carneiro, 17-Oct-2016.) (Proof shortened by Wolf Lammen, 4-Dec-2019.) |
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) | ||
Theorem | rexbii 3100 | Inference adding restricted existential quantifier to both sides of an equivalence. (Contributed by NM, 23-Nov-1994.) (Revised by Mario Carneiro, 17-Oct-2016.) (Proof shortened by Wolf Lammen, 6-Dec-2019.) |
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜓) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |