![]() |
Metamath
Proof Explorer Theorem List (p. 31 of 491) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30946) |
![]() (30947-32469) |
![]() (32470-49035) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | neeq2 3001 | Equality theorem for inequality. (Contributed by NM, 19-Nov-1994.) (Proof shortened by Wolf Lammen, 18-Nov-2019.) |
⊢ (𝐴 = 𝐵 → (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵)) | ||
Theorem | neeq1i 3002 | Inference for inequality. (Contributed by NM, 29-Apr-2005.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶) | ||
Theorem | neeq2i 3003 | Inference for inequality. (Contributed by NM, 29-Apr-2005.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵) | ||
Theorem | neeq12i 3004 | Inference for inequality. (Contributed by NM, 24-Jul-2012.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
⊢ 𝐴 = 𝐵 & ⊢ 𝐶 = 𝐷 ⇒ ⊢ (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐷) | ||
Theorem | eqnetrd 3005 | Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐵 ≠ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ≠ 𝐶) | ||
Theorem | eqnetrrd 3006 | Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐴 ≠ 𝐶) ⇒ ⊢ (𝜑 → 𝐵 ≠ 𝐶) | ||
Theorem | neeqtrd 3007 | Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ≠ 𝐶) | ||
Theorem | eqnetri 3008 | Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
⊢ 𝐴 = 𝐵 & ⊢ 𝐵 ≠ 𝐶 ⇒ ⊢ 𝐴 ≠ 𝐶 | ||
Theorem | eqnetrri 3009 | Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
⊢ 𝐴 = 𝐵 & ⊢ 𝐴 ≠ 𝐶 ⇒ ⊢ 𝐵 ≠ 𝐶 | ||
Theorem | neeqtri 3010 | Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
⊢ 𝐴 ≠ 𝐵 & ⊢ 𝐵 = 𝐶 ⇒ ⊢ 𝐴 ≠ 𝐶 | ||
Theorem | neeqtrri 3011 | Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
⊢ 𝐴 ≠ 𝐵 & ⊢ 𝐶 = 𝐵 ⇒ ⊢ 𝐴 ≠ 𝐶 | ||
Theorem | neeqtrrd 3012 | Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ≠ 𝐶) | ||
Theorem | eqnetrrid 3013 | A chained equality inference for inequality. (Contributed by NM, 6-Jun-2012.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
⊢ 𝐵 = 𝐴 & ⊢ (𝜑 → 𝐵 ≠ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ≠ 𝐶) | ||
Theorem | 3netr3d 3014 | Substitution of equality into both sides of an inequality. (Contributed by NM, 24-Jul-2012.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 𝐴 = 𝐶) & ⊢ (𝜑 → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → 𝐶 ≠ 𝐷) | ||
Theorem | 3netr4d 3015 | Substitution of equality into both sides of an inequality. (Contributed by NM, 24-Jul-2012.) (Proof shortened by Wolf Lammen, 21-Nov-2019.) |
⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐴) & ⊢ (𝜑 → 𝐷 = 𝐵) ⇒ ⊢ (𝜑 → 𝐶 ≠ 𝐷) | ||
Theorem | 3netr3g 3016 | Substitution of equality into both sides of an inequality. (Contributed by NM, 24-Jul-2012.) |
⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ 𝐴 = 𝐶 & ⊢ 𝐵 = 𝐷 ⇒ ⊢ (𝜑 → 𝐶 ≠ 𝐷) | ||
Theorem | 3netr4g 3017 | Substitution of equality into both sides of an inequality. (Contributed by NM, 14-Jun-2012.) |
⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ 𝐶 = 𝐴 & ⊢ 𝐷 = 𝐵 ⇒ ⊢ (𝜑 → 𝐶 ≠ 𝐷) | ||
Theorem | nebi 3018 | Contraposition law for inequality. (Contributed by NM, 28-Dec-2008.) |
⊢ ((𝐴 = 𝐵 ↔ 𝐶 = 𝐷) ↔ (𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷)) | ||
Theorem | pm13.18 3019 | Theorem *13.18 in [WhiteheadRussell] p. 178. (Contributed by Andrew Salmon, 3-Jun-2011.) (Proof shortened by Wolf Lammen, 29-Oct-2024.) |
⊢ ((𝐴 = 𝐵 ∧ 𝐴 ≠ 𝐶) → 𝐵 ≠ 𝐶) | ||
Theorem | pm13.181 3020 | Theorem *13.181 in [WhiteheadRussell] p. 178. (Contributed by Andrew Salmon, 3-Jun-2011.) (Proof shortened by Wolf Lammen, 30-Oct-2024.) |
⊢ ((𝐴 = 𝐵 ∧ 𝐵 ≠ 𝐶) → 𝐴 ≠ 𝐶) | ||
Theorem | pm13.181OLD 3021 | Obsolete version of pm13.181 3020 as of 30-Oct-2024. (Contributed by Andrew Salmon, 3-Jun-2011.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ ((𝐴 = 𝐵 ∧ 𝐵 ≠ 𝐶) → 𝐴 ≠ 𝐶) | ||
Theorem | pm2.61ine 3022 | Inference eliminating an inequality in an antecedent. (Contributed by NM, 16-Jan-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
⊢ (𝐴 = 𝐵 → 𝜑) & ⊢ (𝐴 ≠ 𝐵 → 𝜑) ⇒ ⊢ 𝜑 | ||
Theorem | pm2.21ddne 3023 | A contradiction implies anything. Equality/inequality deduction form. (Contributed by David Moews, 28-Feb-2017.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | pm2.61ne 3024 | Deduction eliminating an inequality in an antecedent. (Contributed by NM, 24-May-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
⊢ (𝐴 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝜓) & ⊢ (𝜑 → 𝜒) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | pm2.61dne 3025 | Deduction eliminating an inequality in an antecedent. (Contributed by NM, 1-Jun-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) & ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | pm2.61dane 3026 | Deduction eliminating an inequality in an antecedent. (Contributed by NM, 30-Nov-2011.) |
⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝜓) & ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | pm2.61da2ne 3027 | Deduction eliminating two inequalities in an antecedent. (Contributed by NM, 29-May-2013.) |
⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝜓) & ⊢ ((𝜑 ∧ 𝐶 = 𝐷) → 𝜓) & ⊢ ((𝜑 ∧ (𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷)) → 𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | pm2.61da3ne 3028 | Deduction eliminating three inequalities in an antecedent. (Contributed by NM, 15-Jun-2013.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝜓) & ⊢ ((𝜑 ∧ 𝐶 = 𝐷) → 𝜓) & ⊢ ((𝜑 ∧ 𝐸 = 𝐹) → 𝜓) & ⊢ ((𝜑 ∧ (𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷 ∧ 𝐸 ≠ 𝐹)) → 𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | pm2.61iine 3029 | Equality version of pm2.61ii 183. (Contributed by Scott Fenton, 13-Jun-2013.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
⊢ ((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) → 𝜑) & ⊢ (𝐴 = 𝐶 → 𝜑) & ⊢ (𝐵 = 𝐷 → 𝜑) ⇒ ⊢ 𝜑 | ||
Theorem | mteqand 3030 | A modus tollens deduction for inequality. (Contributed by Steven Nguyen, 1-Jun-2023.) |
⊢ (𝜑 → 𝐶 ≠ 𝐷) & ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → 𝐴 ≠ 𝐵) | ||
Theorem | neor 3031 | Logical OR with an equality. (Contributed by NM, 29-Apr-2007.) |
⊢ ((𝐴 = 𝐵 ∨ 𝜓) ↔ (𝐴 ≠ 𝐵 → 𝜓)) | ||
Theorem | neanior 3032 | A De Morgan's law for inequality. (Contributed by NM, 18-May-2007.) |
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷) ↔ ¬ (𝐴 = 𝐵 ∨ 𝐶 = 𝐷)) | ||
Theorem | ne3anior 3033 | A De Morgan's law for inequality. (Contributed by NM, 30-Sep-2013.) |
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷 ∧ 𝐸 ≠ 𝐹) ↔ ¬ (𝐴 = 𝐵 ∨ 𝐶 = 𝐷 ∨ 𝐸 = 𝐹)) | ||
Theorem | neorian 3034 | A De Morgan's law for inequality. (Contributed by NM, 18-May-2007.) |
⊢ ((𝐴 ≠ 𝐵 ∨ 𝐶 ≠ 𝐷) ↔ ¬ (𝐴 = 𝐵 ∧ 𝐶 = 𝐷)) | ||
Theorem | nemtbir 3035 | An inference from an inequality, related to modus tollens. (Contributed by NM, 13-Apr-2007.) |
⊢ 𝐴 ≠ 𝐵 & ⊢ (𝜑 ↔ 𝐴 = 𝐵) ⇒ ⊢ ¬ 𝜑 | ||
Theorem | nelne1 3036 | Two classes are different if they don't contain the same element. (Contributed by NM, 3-Feb-2012.) (Proof shortened by Wolf Lammen, 14-May-2023.) |
⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → 𝐵 ≠ 𝐶) | ||
Theorem | nelne2 3037 | Two classes are different if they don't belong to the same class. (Contributed by NM, 25-Jun-2012.) (Proof shortened by Wolf Lammen, 14-May-2023.) |
⊢ ((𝐴 ∈ 𝐶 ∧ ¬ 𝐵 ∈ 𝐶) → 𝐴 ≠ 𝐵) | ||
Theorem | nelelne 3038 | Two classes are different if they don't belong to the same class. (Contributed by Rodolfo Medina, 17-Oct-2010.) (Proof shortened by AV, 10-May-2020.) |
⊢ (¬ 𝐴 ∈ 𝐵 → (𝐶 ∈ 𝐵 → 𝐶 ≠ 𝐴)) | ||
Theorem | neneor 3039 | If two classes are different, a third class must be different of at least one of them. (Contributed by Thierry Arnoux, 8-Aug-2020.) |
⊢ (𝐴 ≠ 𝐵 → (𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐶)) | ||
Theorem | nfne 3040 | Bound-variable hypothesis builder for inequality. (Contributed by NM, 10-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2016.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥 𝐴 ≠ 𝐵 | ||
Theorem | nfned 3041 | Bound-variable hypothesis builder for inequality. (Contributed by NM, 10-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2016.) |
⊢ (𝜑 → Ⅎ𝑥𝐴) & ⊢ (𝜑 → Ⅎ𝑥𝐵) ⇒ ⊢ (𝜑 → Ⅎ𝑥 𝐴 ≠ 𝐵) | ||
Theorem | nabbib 3042 | Not equivalent wff's correspond to not equal class abstractions. (Contributed by AV, 7-Apr-2019.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) Definitial form. (Revised by Wolf Lammen, 5-Mar-2025.) |
⊢ ({𝑥 ∣ 𝜑} ≠ {𝑥 ∣ 𝜓} ↔ ∃𝑥(𝜑 ↔ ¬ 𝜓)) | ||
Syntax | wnel 3043 | Extend wff notation to include negated membership. |
wff 𝐴 ∉ 𝐵 | ||
Definition | df-nel 3044 | Define negated membership. (Contributed by NM, 7-Aug-1994.) |
⊢ (𝐴 ∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵) | ||
Theorem | neli 3045 | Inference associated with df-nel 3044. (Contributed by BJ, 7-Jul-2018.) |
⊢ 𝐴 ∉ 𝐵 ⇒ ⊢ ¬ 𝐴 ∈ 𝐵 | ||
Theorem | nelir 3046 | Inference associated with df-nel 3044. (Contributed by BJ, 7-Jul-2018.) |
⊢ ¬ 𝐴 ∈ 𝐵 ⇒ ⊢ 𝐴 ∉ 𝐵 | ||
Theorem | nelcon3d 3047 | Contrapositive law deduction for negated membership. (Contributed by AV, 28-Jan-2020.) |
⊢ (𝜑 → (𝐴 ∈ 𝐵 → 𝐶 ∈ 𝐷)) ⇒ ⊢ (𝜑 → (𝐶 ∉ 𝐷 → 𝐴 ∉ 𝐵)) | ||
Theorem | neleq12d 3048 | Equality theorem for negated membership. (Contributed by FL, 10-Aug-2016.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝐴 ∉ 𝐶 ↔ 𝐵 ∉ 𝐷)) | ||
Theorem | neleq1 3049 | Equality theorem for negated membership. (Contributed by NM, 20-Nov-1994.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
⊢ (𝐴 = 𝐵 → (𝐴 ∉ 𝐶 ↔ 𝐵 ∉ 𝐶)) | ||
Theorem | neleq2 3050 | Equality theorem for negated membership. (Contributed by NM, 20-Nov-1994.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
⊢ (𝐴 = 𝐵 → (𝐶 ∉ 𝐴 ↔ 𝐶 ∉ 𝐵)) | ||
Theorem | nfnel 3051 | Bound-variable hypothesis builder for negated membership. (Contributed by David Abernethy, 26-Jun-2011.) (Revised by Mario Carneiro, 7-Oct-2016.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥 𝐴 ∉ 𝐵 | ||
Theorem | nfneld 3052 | Bound-variable hypothesis builder for negated membership. (Contributed by David Abernethy, 26-Jun-2011.) (Revised by Mario Carneiro, 7-Oct-2016.) |
⊢ (𝜑 → Ⅎ𝑥𝐴) & ⊢ (𝜑 → Ⅎ𝑥𝐵) ⇒ ⊢ (𝜑 → Ⅎ𝑥 𝐴 ∉ 𝐵) | ||
Theorem | nnel 3053 | Negation of negated membership, analogous to nne 2941. (Contributed by Alexander van der Vekens, 18-Jan-2018.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
⊢ (¬ 𝐴 ∉ 𝐵 ↔ 𝐴 ∈ 𝐵) | ||
Theorem | elnelne1 3054 | Two classes are different if they don't contain the same element. (Contributed by AV, 28-Jan-2020.) |
⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∉ 𝐶) → 𝐵 ≠ 𝐶) | ||
Theorem | elnelne2 3055 | Two classes are different if they don't belong to the same class. (Contributed by AV, 28-Jan-2020.) |
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∉ 𝐶) → 𝐴 ≠ 𝐵) | ||
Theorem | pm2.24nel 3056 | A contradiction concerning membership implies anything. (Contributed by Alexander van der Vekens, 25-Jan-2018.) |
⊢ (𝐴 ∈ 𝐵 → (𝐴 ∉ 𝐵 → 𝜑)) | ||
Theorem | pm2.61danel 3057 | Deduction eliminating an elementhood in an antecedent. (Contributed by AV, 5-Dec-2021.) |
⊢ ((𝜑 ∧ 𝐴 ∈ 𝐵) → 𝜓) & ⊢ ((𝜑 ∧ 𝐴 ∉ 𝐵) → 𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
Syntax | wral 3058 | Extend wff notation to include restricted universal quantification. |
wff ∀𝑥 ∈ 𝐴 𝜑 | ||
Definition | df-ral 3059 |
Define restricted universal quantification. Special case of Definition
4.15(3) of [TakeutiZaring] p. 22.
Note: This notation is most often used to express that 𝜑 holds for all elements of a given class 𝐴. For this reading Ⅎ𝑥𝐴 is required, though, for example, asserted when 𝑥 and 𝐴 are disjoint. Should instead 𝐴 depend on 𝑥, you rather focus on those 𝑥 that happen to be contained in the corresponding 𝐴(𝑥). This hardly used interpretation could still occur naturally. For some examples, look at ralndv1 47054 or ralndv2 47055, courtesy of AV. So be careful to either keep 𝐴 independent of 𝑥, or adjust your comments to include such exotic cases. (Contributed by NM, 19-Aug-1993.) |
⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | ||
Theorem | rgen 3060 | Generalization rule for restricted quantification. (Contributed by NM, 19-Nov-1994.) |
⊢ (𝑥 ∈ 𝐴 → 𝜑) ⇒ ⊢ ∀𝑥 ∈ 𝐴 𝜑 | ||
Theorem | ralel 3061 | All elements of a class are elements of the class. (Contributed by AV, 30-Oct-2020.) |
⊢ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐴 | ||
Theorem | rgenw 3062 | Generalization rule for restricted quantification. (Contributed by NM, 18-Jun-2014.) |
⊢ 𝜑 ⇒ ⊢ ∀𝑥 ∈ 𝐴 𝜑 | ||
Theorem | rgen2w 3063 | Generalization rule for restricted quantification. Note that 𝑥 and 𝑦 needn't be distinct. (Contributed by NM, 18-Jun-2014.) |
⊢ 𝜑 ⇒ ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 | ||
Theorem | mprg 3064 | Modus ponens combined with restricted generalization. (Contributed by NM, 10-Aug-2004.) |
⊢ (∀𝑥 ∈ 𝐴 𝜑 → 𝜓) & ⊢ (𝑥 ∈ 𝐴 → 𝜑) ⇒ ⊢ 𝜓 | ||
Theorem | mprgbir 3065 | Modus ponens on biconditional combined with restricted generalization. (Contributed by NM, 21-Mar-2004.) |
⊢ (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) & ⊢ (𝑥 ∈ 𝐴 → 𝜓) ⇒ ⊢ 𝜑 | ||
Theorem | raln 3066 | Restricted universally quantified negation expressed as a universally quantified negation. (Contributed by BJ, 16-Jul-2021.) |
⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∀𝑥 ¬ (𝑥 ∈ 𝐴 ∧ 𝜑)) | ||
Syntax | wrex 3067 | Extend wff notation to include restricted existential quantification. |
wff ∃𝑥 ∈ 𝐴 𝜑 | ||
Definition | df-rex 3068 |
Define restricted existential quantification. Special case of Definition
4.15(4) of [TakeutiZaring] p. 22.
Note: This notation is most often used to express that 𝜑 holds for at least one element of a given class 𝐴. For this reading Ⅎ𝑥𝐴 is required, though, for example, asserted when 𝑥 and 𝐴 are disjoint. Should instead 𝐴 depend on 𝑥, you rather assert at least one 𝑥 fulfilling 𝜑 happens to be contained in the corresponding 𝐴(𝑥). This interpretation is rarely needed (see also df-ral 3059). (Contributed by NM, 30-Aug-1993.) |
⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | ||
Theorem | ralnex 3069 | Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997.) (Proof shortened by BJ, 16-Jul-2021.) |
⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜑) | ||
Theorem | dfrex2 3070 | Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997.) (Proof shortened by Wolf Lammen, 26-Nov-2019.) |
⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) | ||
Theorem | nrex 3071 | Inference adding restricted existential quantifier to negated wff. (Contributed by NM, 16-Oct-2003.) |
⊢ (𝑥 ∈ 𝐴 → ¬ 𝜓) ⇒ ⊢ ¬ ∃𝑥 ∈ 𝐴 𝜓 | ||
Theorem | alral 3072 | Universal quantification implies restricted quantification. (Contributed by NM, 20-Oct-2006.) |
⊢ (∀𝑥𝜑 → ∀𝑥 ∈ 𝐴 𝜑) | ||
Theorem | rexex 3073 | Restricted existence implies existence. (Contributed by NM, 11-Nov-1995.) |
⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥𝜑) | ||
Theorem | rextru 3074 | Two ways of expressing that a class has at least one element. (Contributed by Zhi Wang, 23-Sep-2024.) |
⊢ (∃𝑥 𝑥 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 ⊤) | ||
Theorem | ralimi2 3075 | Inference quantifying both antecedent and consequent. (Contributed by NM, 22-Feb-2004.) |
⊢ ((𝑥 ∈ 𝐴 → 𝜑) → (𝑥 ∈ 𝐵 → 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐵 𝜓) | ||
Theorem | reximi2 3076 | Inference quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 8-Nov-2004.) |
⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐵 ∧ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜓) | ||
Theorem | ralimia 3077 | Inference quantifying both antecedent and consequent. (Contributed by NM, 19-Jul-1996.) |
⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓) | ||
Theorem | reximia 3078 | Inference quantifying both antecedent and consequent. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Wolf Lammen, 31-Oct-2024.) |
⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) | ||
Theorem | ralimiaa 3079 | Inference quantifying both antecedent and consequent. (Contributed by NM, 4-Aug-2007.) |
⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓) | ||
Theorem | ralimi 3080 | Inference quantifying both antecedent and consequent, with strong hypothesis. (Contributed by NM, 4-Mar-1997.) |
⊢ (𝜑 → 𝜓) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓) | ||
Theorem | reximi 3081 | Inference quantifying both antecedent and consequent. (Contributed by NM, 18-Oct-1996.) |
⊢ (𝜑 → 𝜓) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) | ||
Theorem | ral2imi 3082 | Inference quantifying antecedent, nested antecedent, and consequent, with a strong hypothesis. (Contributed by NM, 19-Dec-2006.) Allow shortening of ralim 3083. (Revised by Wolf Lammen, 1-Dec-2019.) |
⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | ralim 3083 | Distribution of restricted quantification over implication. (Contributed by NM, 9-Feb-1997.) (Proof shortened by Wolf Lammen, 1-Dec-2019.) |
⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) | ||
Theorem | rexim 3084 | Theorem 19.22 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 22-Nov-1994.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) | ||
Theorem | reximiaOLD 3085 | Obsolete version of reximia 3078 as of 31-Oct-2024. (Contributed by NM, 10-Feb-1997.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) | ||
Theorem | ralbii2 3086 | Inference adding different restricted universal quantifiers to each side of an equivalence. (Contributed by NM, 15-Aug-2005.) |
⊢ ((𝑥 ∈ 𝐴 → 𝜑) ↔ (𝑥 ∈ 𝐵 → 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜓) | ||
Theorem | rexbii2 3087 | Inference adding different restricted existential quantifiers to each side of an equivalence. (Contributed by NM, 4-Feb-2004.) |
⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜓) | ||
Theorem | ralbiia 3088 | Inference adding restricted universal quantifier to both sides of an equivalence. (Contributed by NM, 26-Nov-2000.) |
⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) | ||
Theorem | rexbiia 3089 | Inference adding restricted existential quantifier to both sides of an equivalence. (Contributed by NM, 26-Oct-1999.) |
⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜓) | ||
Theorem | ralbii 3090 | Inference adding restricted universal quantifier to both sides of an equivalence. (Contributed by NM, 23-Nov-1994.) (Revised by Mario Carneiro, 17-Oct-2016.) (Proof shortened by Wolf Lammen, 4-Dec-2019.) |
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) | ||
Theorem | rexbii 3091 | Inference adding restricted existential quantifier to both sides of an equivalence. (Contributed by NM, 23-Nov-1994.) (Revised by Mario Carneiro, 17-Oct-2016.) (Proof shortened by Wolf Lammen, 6-Dec-2019.) |
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜓) | ||
Theorem | ralanid 3092 | Cancellation law for restricted universal quantification. (Contributed by Peter Mazsa, 30-Dec-2018.) (Proof shortened by Wolf Lammen, 29-Jun-2023.) |
⊢ (∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∀𝑥 ∈ 𝐴 𝜑) | ||
Theorem | rexanid 3093 | Cancellation law for restricted existential quantification. (Contributed by Peter Mazsa, 24-May-2018.) (Proof shortened by Wolf Lammen, 8-Jul-2023.) |
⊢ (∃𝑥 ∈ 𝐴 (𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥 ∈ 𝐴 𝜑) | ||
Theorem | ralcom3 3094 | A commutation law for restricted universal quantifiers that swaps the domains of the restriction. (Contributed by NM, 22-Feb-2004.) (Proof shortened by Wolf Lammen, 22-Dec-2024.) |
⊢ (∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 → 𝜑) ↔ ∀𝑥 ∈ 𝐵 (𝑥 ∈ 𝐴 → 𝜑)) | ||
Theorem | ralcom3OLD 3095 | Obsolete version of ralcom3 3094 as of 22-Dec-2024. (Contributed by NM, 22-Feb-2004.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 → 𝜑) ↔ ∀𝑥 ∈ 𝐵 (𝑥 ∈ 𝐴 → 𝜑)) | ||
Theorem | dfral2 3096 | Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997.) Allow shortening of rexnal 3097. (Revised by Wolf Lammen, 9-Dec-2019.) |
⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 ¬ 𝜑) | ||
Theorem | rexnal 3097 | Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997.) (Proof shortened by Wolf Lammen, 9-Dec-2019.) |
⊢ (∃𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 𝜑) | ||
Theorem | ralinexa 3098 | A transformation of restricted quantifiers and logical connectives. (Contributed by NM, 4-Sep-2005.) |
⊢ (∀𝑥 ∈ 𝐴 (𝜑 → ¬ 𝜓) ↔ ¬ ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) | ||
Theorem | rexanali 3099 | A transformation of restricted quantifiers and logical connectives. (Contributed by NM, 4-Sep-2005.) (Proof shortened by Wolf Lammen, 27-Dec-2019.) |
⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ ¬ 𝜓) ↔ ¬ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓)) | ||
Theorem | ralbi 3100 | Distribute a restricted universal quantifier over a biconditional. Restricted quantification version of albi 1814. (Contributed by NM, 6-Oct-2003.) Reduce axiom usage. (Revised by Wolf Lammen, 17-Jun-2023.) |
⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |