MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3netr4g Structured version   Visualization version   GIF version

Theorem 3netr4g 3023
Description: Substitution of equality into both sides of an inequality. (Contributed by NM, 14-Jun-2012.)
Hypotheses
Ref Expression
3netr4g.1 (𝜑𝐴𝐵)
3netr4g.2 𝐶 = 𝐴
3netr4g.3 𝐷 = 𝐵
Assertion
Ref Expression
3netr4g (𝜑𝐶𝐷)

Proof of Theorem 3netr4g
StepHypRef Expression
1 3netr4g.1 . 2 (𝜑𝐴𝐵)
2 3netr4g.2 . . 3 𝐶 = 𝐴
3 3netr4g.3 . . 3 𝐷 = 𝐵
42, 3neeq12i 3010 . 2 (𝐶𝐷𝐴𝐵)
51, 4sylibr 233 1 (𝜑𝐶𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wne 2943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-cleq 2730  df-ne 2944
This theorem is referenced by:  aalioulem2  25493  mapdpglem18  39703  line2x  46100
  Copyright terms: Public domain W3C validator