|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > 3netr4g | Structured version Visualization version GIF version | ||
| Description: Substitution of equality into both sides of an inequality. (Contributed by NM, 14-Jun-2012.) | 
| Ref | Expression | 
|---|---|
| 3netr4g.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) | 
| 3netr4g.2 | ⊢ 𝐶 = 𝐴 | 
| 3netr4g.3 | ⊢ 𝐷 = 𝐵 | 
| Ref | Expression | 
|---|---|
| 3netr4g | ⊢ (𝜑 → 𝐶 ≠ 𝐷) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 3netr4g.1 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 2 | 3netr4g.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
| 3 | 3netr4g.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
| 4 | 2, 3 | neeq12i 3006 | . 2 ⊢ (𝐶 ≠ 𝐷 ↔ 𝐴 ≠ 𝐵) | 
| 5 | 1, 4 | sylibr 234 | 1 ⊢ (𝜑 → 𝐶 ≠ 𝐷) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1539 ≠ wne 2939 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-9 2117 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-cleq 2728 df-ne 2940 | 
| This theorem is referenced by: aalioulem2 26376 mapdpglem18 41692 line2x 48680 | 
| Copyright terms: Public domain | W3C validator |