Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > necon3bid | Structured version Visualization version GIF version |
Description: Deduction from equality to inequality. (Contributed by NM, 23-Feb-2005.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
necon3bid.1 | ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝐶 = 𝐷)) |
Ref | Expression |
---|---|
necon3bid | ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2943 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
2 | necon3bid.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝐶 = 𝐷)) | |
3 | 2 | necon3bbid 2980 | . 2 ⊢ (𝜑 → (¬ 𝐴 = 𝐵 ↔ 𝐶 ≠ 𝐷)) |
4 | 1, 3 | syl5bb 282 | 1 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷)) |
Copyright terms: Public domain | W3C validator |