Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm13.18 | Structured version Visualization version GIF version |
Description: Theorem *13.18 in [WhiteheadRussell] p. 178. (Contributed by Andrew Salmon, 3-Jun-2011.) (Proof shortened by Wolf Lammen, 29-Oct-2024.) |
Ref | Expression |
---|---|
pm13.18 | ⊢ ((𝐴 = 𝐵 ∧ 𝐴 ≠ 𝐶) → 𝐵 ≠ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeq1 3003 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶)) | |
2 | 1 | biimpa 480 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐴 ≠ 𝐶) → 𝐵 ≠ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ≠ wne 2940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1788 df-cleq 2729 df-ne 2941 |
This theorem is referenced by: pm13.181 3024 iotan0 6370 frgrwopreglem5a 28394 4atexlemex4 37824 cncfiooicclem1 43109 |
Copyright terms: Public domain | W3C validator |