MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm13.18 Structured version   Visualization version   GIF version

Theorem pm13.18 3022
Description: Theorem *13.18 in [WhiteheadRussell] p. 178. (Contributed by Andrew Salmon, 3-Jun-2011.) (Proof shortened by Wolf Lammen, 29-Oct-2024.)
Assertion
Ref Expression
pm13.18 ((𝐴 = 𝐵𝐴𝐶) → 𝐵𝐶)

Proof of Theorem pm13.18
StepHypRef Expression
1 neeq1 3003 . 2 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
21biimpa 477 1 ((𝐴 = 𝐵𝐴𝐶) → 𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wne 2940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1782  df-cleq 2724  df-ne 2941
This theorem is referenced by:  pm13.181OLD  3024  iotan0  6533  frgrwopreglem5a  29561  4atexlemex4  38939  cncfiooicclem1  44599
  Copyright terms: Public domain W3C validator