MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon3aiOLD Structured version   Visualization version   GIF version

Theorem necon3aiOLD 2970
Description: Obsolete version of necon3ai 2969 as of 28-Oct-2024. (Contributed by NM, 23-May-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
necon3ai.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
necon3aiOLD (𝐴𝐵 → ¬ 𝜑)

Proof of Theorem necon3aiOLD
StepHypRef Expression
1 necon3ai.1 . . 3 (𝜑𝐴 = 𝐵)
2 nne 2948 . . 3 𝐴𝐵𝐴 = 𝐵)
31, 2sylibr 233 . 2 (𝜑 → ¬ 𝐴𝐵)
43con2i 139 1 (𝐴𝐵 → ¬ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wne 2944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-ne 2945
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator