![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > con2i | Structured version Visualization version GIF version |
Description: A contraposition inference. Its associated inference is mt2 200. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Mel L. O'Cat, 28-Nov-2008.) (Proof shortened by Wolf Lammen, 13-Jun-2013.) |
Ref | Expression |
---|---|
con2i.a | ⊢ (𝜑 → ¬ 𝜓) |
Ref | Expression |
---|---|
con2i | ⊢ (𝜓 → ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con2i.a | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
2 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
3 | 1, 2 | nsyl3 138 | 1 ⊢ (𝜓 → ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: nsyl 140 notnot 142 pm2.65i 194 pm3.14 996 pclem6 1026 hba1w 2047 axc4 2325 festinoALT 2678 necon3aiOLD 2972 necon2ai 2976 necon2bi 2977 eueq3 3733 ssnpss 4129 psstr 4130 elndif 4156 n0i 4363 axnulALT 5322 nfcvb 5394 zfpair 5439 epelg 5600 onxpdisj 6521 ftpg 7190 nlimsucg 7879 reldmtpos 8275 bren2 9043 sdom0OLD 9175 domunsn 9193 sdom1OLD 9306 1sdom2dom 9310 enp1iOLD 9342 alephval3 10179 cdainflem 10257 ackbij1lem18 10305 isfin4p1 10384 fincssdom 10392 fin23lem41 10421 fin17 10463 fin1a2lem7 10475 axcclem 10526 pwcfsdom 10652 canthp1lem1 10721 hargch 10742 winainflem 10762 ltxrlt 11360 xmullem2 13327 rexmul 13333 xlemul1a 13350 fzdisj 13611 lcmfunsnlem2lem2 16686 smndex1n0mnd 18947 pmtrdifellem4 19521 psgnunilem3 19538 frgpcyg 21615 dvlog2lem 26712 lgsval2lem 27369 elons2 28299 strlem1 32282 chrelat2i 32397 dfrdg4 35915 finminlem 36284 bj-nimn 36529 bj-modald 36639 finxpreclem3 37359 finxpreclem5 37361 hba1-o 38853 hlrelat2 39360 cdleme50ldil 40505 lcmineqlem23 42008 onov0suclim 43236 or3or 43985 stoweidlem14 45935 alneu 47039 2nodd 47895 elsetrecslem 48791 |
Copyright terms: Public domain | W3C validator |