![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > con2i | Structured version Visualization version GIF version |
Description: A contraposition inference. Its associated inference is mt2 199. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Mel L. O'Cat, 28-Nov-2008.) (Proof shortened by Wolf Lammen, 13-Jun-2013.) |
Ref | Expression |
---|---|
con2i.a | ⊢ (𝜑 → ¬ 𝜓) |
Ref | Expression |
---|---|
con2i | ⊢ (𝜓 → ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con2i.a | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
2 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
3 | 1, 2 | nsyl3 138 | 1 ⊢ (𝜓 → ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: nsyl 140 notnot 142 pm2.65i 193 pm3.14 995 pclem6 1025 hba1w 2051 axc4 2315 festinoALT 2671 necon3aiOLD 2967 necon2ai 2971 necon2bi 2972 eueq3 3708 ssnpss 4104 psstr 4105 elndif 4129 n0i 4334 axnulALT 5305 nfcvb 5375 zfpair 5420 epelg 5582 onxpdisj 6491 ftpg 7154 nlimsucg 7831 reldmtpos 8219 bren2 8979 sdom0OLD 9109 domunsn 9127 sdom1OLD 9243 1sdom2dom 9247 enp1iOLD 9280 alephval3 10105 cdainflem 10182 ackbij1lem18 10232 isfin4p1 10310 fincssdom 10318 fin23lem41 10347 fin17 10389 fin1a2lem7 10401 axcclem 10452 pwcfsdom 10578 canthp1lem1 10647 hargch 10668 winainflem 10688 ltxrlt 11284 xmullem2 13244 rexmul 13250 xlemul1a 13267 fzdisj 13528 lcmfunsnlem2lem2 16576 smndex1n0mnd 18793 pmtrdifellem4 19347 psgnunilem3 19364 frgpcyg 21129 dvlog2lem 26160 lgsval2lem 26810 strlem1 31503 chrelat2i 31618 dfrdg4 34923 finminlem 35203 bj-nimn 35440 bj-modald 35550 finxpreclem3 36274 finxpreclem5 36276 hba1-o 37767 hlrelat2 38274 cdleme50ldil 39419 lcmineqlem23 40916 onov0suclim 42024 or3or 42774 stoweidlem14 44730 alneu 45832 2nodd 46582 elsetrecslem 47744 |
Copyright terms: Public domain | W3C validator |