| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con2i | Structured version Visualization version GIF version | ||
| Description: A contraposition inference. Its associated inference is mt2 200. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Mel L. O'Cat, 28-Nov-2008.) (Proof shortened by Wolf Lammen, 13-Jun-2013.) |
| Ref | Expression |
|---|---|
| con2i.a | ⊢ (𝜑 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| con2i | ⊢ (𝜓 → ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con2i.a | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
| 3 | 1, 2 | nsyl3 138 | 1 ⊢ (𝜓 → ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: nsyl 140 notnot 142 pm2.65i 194 pm3.14 997 pclem6 1027 hba1w 2050 axc4 2324 festinoALT 2672 necon2ai 2958 necon2bi 2959 eueq3 3666 ssnpss 4055 psstr 4056 elndif 4082 n0i 4289 axnulALT 5244 nfcvb 5316 zfpair 5361 epelg 5520 onxpdisj 6438 ftpg 7095 nlimsucg 7778 reldmtpos 8170 bren2 8912 domunsn 9047 1sdom2dom 9145 nelaneq 9494 alephval3 10008 cdainflem 10086 ackbij1lem18 10134 isfin4p1 10213 fincssdom 10221 fin23lem41 10250 fin17 10292 fin1a2lem7 10304 axcclem 10355 pwcfsdom 10481 canthp1lem1 10550 hargch 10571 winainflem 10591 ltxrlt 11190 xmullem2 13166 rexmul 13172 xlemul1a 13189 fzdisj 13453 lcmfunsnlem2lem2 16552 smndex1n0mnd 18822 pmtrdifellem4 19393 psgnunilem3 19410 frgpcyg 21512 dvlog2lem 26589 lgsval2lem 27246 elons2 28196 strlem1 32232 chrelat2i 32347 onvf1odlem1 35168 dfrdg4 36016 finminlem 36383 bj-nimn 36628 bj-modald 36738 finxpreclem3 37458 finxpreclem5 37460 hba1-o 39016 hlrelat2 39522 cdleme50ldil 40667 lcmineqlem23 42164 onov0suclim 43391 or3or 44140 stoweidlem14 46136 alneu 47248 2nodd 48296 elsetrecslem 49824 |
| Copyright terms: Public domain | W3C validator |