Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > con2i | Structured version Visualization version GIF version |
Description: A contraposition inference. Its associated inference is mt2 199. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Mel L. O'Cat, 28-Nov-2008.) (Proof shortened by Wolf Lammen, 13-Jun-2013.) |
Ref | Expression |
---|---|
con2i.a | ⊢ (𝜑 → ¬ 𝜓) |
Ref | Expression |
---|---|
con2i | ⊢ (𝜓 → ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con2i.a | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
2 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
3 | 1, 2 | nsyl3 138 | 1 ⊢ (𝜓 → ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: nsyl 140 notnot 142 pm2.65i 193 pm3.14 993 pclem6 1023 hba1w 2051 axc4 2316 festinoALT 2677 necon3aiOLD 2970 necon2ai 2974 necon2bi 2975 eueq3 3647 ssnpss 4039 psstr 4040 elndif 4064 n0i 4268 axnulALT 5229 nfcvb 5300 zfpair 5345 epelg 5497 onxpdisj 6390 ftpg 7037 nlimsucg 7698 reldmtpos 8059 bren2 8780 sdom0OLD 8905 domunsn 8923 sdom1 9031 enp1i 9061 alephval3 9875 cdainflem 9952 ackbij1lem18 10002 isfin4p1 10080 fincssdom 10088 fin23lem41 10117 fin17 10159 fin1a2lem7 10171 axcclem 10222 pwcfsdom 10348 canthp1lem1 10417 hargch 10438 winainflem 10458 ltxrlt 11054 xmullem2 13008 rexmul 13014 xlemul1a 13031 fzdisj 13292 lcmfunsnlem2lem2 16353 smndex1n0mnd 18560 pmtrdifellem4 19096 psgnunilem3 19113 frgpcyg 20790 dvlog2lem 25816 lgsval2lem 26464 strlem1 30621 chrelat2i 30736 dfrdg4 34262 finminlem 34516 bj-nimn 34753 bj-modald 34863 finxpreclem3 35573 finxpreclem5 35575 hba1-o 36918 hlrelat2 37424 cdleme50ldil 38569 lcmineqlem23 40066 sn-dtru 40195 or3or 41638 stoweidlem14 43562 alneu 44627 2nodd 45377 elsetrecslem 46415 |
Copyright terms: Public domain | W3C validator |