| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con2i | Structured version Visualization version GIF version | ||
| Description: A contraposition inference. Its associated inference is mt2 200. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Mel L. O'Cat, 28-Nov-2008.) (Proof shortened by Wolf Lammen, 13-Jun-2013.) |
| Ref | Expression |
|---|---|
| con2i.a | ⊢ (𝜑 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| con2i | ⊢ (𝜓 → ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con2i.a | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
| 3 | 1, 2 | nsyl3 138 | 1 ⊢ (𝜓 → ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: nsyl 140 notnot 142 pm2.65i 194 pm3.14 997 pclem6 1027 hba1w 2050 axc4 2322 festinoALT 2670 necon2ai 2957 necon2bi 2958 eueq3 3670 ssnpss 4056 psstr 4057 elndif 4083 n0i 4290 axnulALT 5242 nfcvb 5314 zfpair 5359 epelg 5517 onxpdisj 6433 ftpg 7089 nlimsucg 7772 reldmtpos 8164 bren2 8905 domunsn 9040 1sdom2dom 9138 nelaneq 9487 alephval3 9998 cdainflem 10076 ackbij1lem18 10124 isfin4p1 10203 fincssdom 10211 fin23lem41 10240 fin17 10282 fin1a2lem7 10294 axcclem 10345 pwcfsdom 10471 canthp1lem1 10540 hargch 10561 winainflem 10581 ltxrlt 11180 xmullem2 13161 rexmul 13167 xlemul1a 13184 fzdisj 13448 lcmfunsnlem2lem2 16547 smndex1n0mnd 18817 pmtrdifellem4 19389 psgnunilem3 19406 frgpcyg 21508 dvlog2lem 26586 lgsval2lem 27243 elons2 28193 strlem1 32225 chrelat2i 32340 onvf1odlem1 35135 dfrdg4 35984 finminlem 36351 bj-nimn 36596 bj-modald 36706 finxpreclem3 37426 finxpreclem5 37428 hba1-o 38935 hlrelat2 39441 cdleme50ldil 40586 lcmineqlem23 42083 onov0suclim 43306 or3or 44055 stoweidlem14 46051 alneu 47154 2nodd 48202 elsetrecslem 49730 |
| Copyright terms: Public domain | W3C validator |