| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con2i | Structured version Visualization version GIF version | ||
| Description: A contraposition inference. Its associated inference is mt2 200. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Mel L. O'Cat, 28-Nov-2008.) (Proof shortened by Wolf Lammen, 13-Jun-2013.) |
| Ref | Expression |
|---|---|
| con2i.a | ⊢ (𝜑 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| con2i | ⊢ (𝜓 → ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con2i.a | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
| 3 | 1, 2 | nsyl3 138 | 1 ⊢ (𝜓 → ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: nsyl 140 notnot 142 pm2.65i 194 pm3.14 997 pclem6 1027 hba1w 2047 axc4 2321 festinoALT 2674 necon2ai 2961 necon2bi 2962 eueq3 3694 ssnpss 4081 psstr 4082 elndif 4108 n0i 4315 axnulALT 5274 nfcvb 5346 zfpair 5391 epelg 5554 onxpdisj 6479 ftpg 7145 nlimsucg 7835 reldmtpos 8231 bren2 8995 sdom0OLD 9121 domunsn 9139 sdom1OLD 9249 1sdom2dom 9253 enp1iOLD 9284 alephval3 10122 cdainflem 10200 ackbij1lem18 10248 isfin4p1 10327 fincssdom 10335 fin23lem41 10364 fin17 10406 fin1a2lem7 10418 axcclem 10469 pwcfsdom 10595 canthp1lem1 10664 hargch 10685 winainflem 10705 ltxrlt 11303 xmullem2 13279 rexmul 13285 xlemul1a 13302 fzdisj 13566 lcmfunsnlem2lem2 16656 smndex1n0mnd 18888 pmtrdifellem4 19458 psgnunilem3 19475 frgpcyg 21532 dvlog2lem 26611 lgsval2lem 27268 elons2 28198 strlem1 32177 chrelat2i 32292 dfrdg4 35915 finminlem 36282 bj-nimn 36527 bj-modald 36637 finxpreclem3 37357 finxpreclem5 37359 hba1-o 38861 hlrelat2 39368 cdleme50ldil 40513 lcmineqlem23 42010 onov0suclim 43245 or3or 43994 stoweidlem14 45991 alneu 47101 2nodd 48095 elsetrecslem 49511 |
| Copyright terms: Public domain | W3C validator |