| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con2i | Structured version Visualization version GIF version | ||
| Description: A contraposition inference. Its associated inference is mt2 200. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Mel L. O'Cat, 28-Nov-2008.) (Proof shortened by Wolf Lammen, 13-Jun-2013.) |
| Ref | Expression |
|---|---|
| con2i.a | ⊢ (𝜑 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| con2i | ⊢ (𝜓 → ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con2i.a | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
| 3 | 1, 2 | nsyl3 138 | 1 ⊢ (𝜓 → ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: nsyl 140 notnot 142 pm2.65i 194 pm3.14 997 pclem6 1027 hba1w 2048 axc4 2320 festinoALT 2668 necon2ai 2954 necon2bi 2955 eueq3 3673 ssnpss 4059 psstr 4060 elndif 4086 n0i 4293 axnulALT 5246 nfcvb 5318 zfpair 5363 epelg 5524 onxpdisj 6438 ftpg 7094 nlimsucg 7782 reldmtpos 8174 bren2 8915 domunsn 9051 1sdom2dom 9153 enp1iOLD 9183 nelaneq 9512 alephval3 10023 cdainflem 10101 ackbij1lem18 10149 isfin4p1 10228 fincssdom 10236 fin23lem41 10265 fin17 10307 fin1a2lem7 10319 axcclem 10370 pwcfsdom 10496 canthp1lem1 10565 hargch 10586 winainflem 10606 ltxrlt 11204 xmullem2 13185 rexmul 13191 xlemul1a 13208 fzdisj 13472 lcmfunsnlem2lem2 16568 smndex1n0mnd 18804 pmtrdifellem4 19376 psgnunilem3 19393 frgpcyg 21498 dvlog2lem 26577 lgsval2lem 27234 elons2 28182 strlem1 32212 chrelat2i 32327 onvf1odlem1 35075 dfrdg4 35924 finminlem 36291 bj-nimn 36536 bj-modald 36646 finxpreclem3 37366 finxpreclem5 37368 hba1-o 38875 hlrelat2 39382 cdleme50ldil 40527 lcmineqlem23 42024 onov0suclim 43247 or3or 43996 stoweidlem14 45996 alneu 47109 2nodd 48157 elsetrecslem 49685 |
| Copyright terms: Public domain | W3C validator |