![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > con2i | Structured version Visualization version GIF version |
Description: A contraposition inference. Its associated inference is mt2 200. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Mel L. O'Cat, 28-Nov-2008.) (Proof shortened by Wolf Lammen, 13-Jun-2013.) |
Ref | Expression |
---|---|
con2i.a | ⊢ (𝜑 → ¬ 𝜓) |
Ref | Expression |
---|---|
con2i | ⊢ (𝜓 → ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con2i.a | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
2 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
3 | 1, 2 | nsyl3 138 | 1 ⊢ (𝜓 → ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: nsyl 140 notnot 142 pm2.65i 194 pm3.14 997 pclem6 1027 hba1w 2044 axc4 2319 festinoALT 2672 necon3aiOLD 2963 necon2ai 2967 necon2bi 2968 eueq3 3719 ssnpss 4115 psstr 4116 elndif 4142 n0i 4345 axnulALT 5309 nfcvb 5381 zfpair 5426 epelg 5589 onxpdisj 6511 ftpg 7175 nlimsucg 7862 reldmtpos 8257 bren2 9021 sdom0OLD 9147 domunsn 9165 sdom1OLD 9276 1sdom2dom 9280 enp1iOLD 9311 alephval3 10147 cdainflem 10225 ackbij1lem18 10273 isfin4p1 10352 fincssdom 10360 fin23lem41 10389 fin17 10431 fin1a2lem7 10443 axcclem 10494 pwcfsdom 10620 canthp1lem1 10689 hargch 10710 winainflem 10730 ltxrlt 11328 xmullem2 13303 rexmul 13309 xlemul1a 13326 fzdisj 13587 lcmfunsnlem2lem2 16672 smndex1n0mnd 18937 pmtrdifellem4 19511 psgnunilem3 19528 frgpcyg 21609 dvlog2lem 26708 lgsval2lem 27365 elons2 28295 strlem1 32278 chrelat2i 32393 dfrdg4 35932 finminlem 36300 bj-nimn 36545 bj-modald 36655 finxpreclem3 37375 finxpreclem5 37377 hba1-o 38878 hlrelat2 39385 cdleme50ldil 40530 lcmineqlem23 42032 onov0suclim 43263 or3or 44012 stoweidlem14 45969 alneu 47073 2nodd 48015 elsetrecslem 48929 |
Copyright terms: Public domain | W3C validator |