| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con2i | Structured version Visualization version GIF version | ||
| Description: A contraposition inference. Its associated inference is mt2 200. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Mel L. O'Cat, 28-Nov-2008.) (Proof shortened by Wolf Lammen, 13-Jun-2013.) |
| Ref | Expression |
|---|---|
| con2i.a | ⊢ (𝜑 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| con2i | ⊢ (𝜓 → ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con2i.a | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
| 3 | 1, 2 | nsyl3 138 | 1 ⊢ (𝜓 → ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: nsyl 140 notnot 142 pm2.65i 194 pm3.14 998 pclem6 1028 hba1w 2047 axc4 2321 festinoALT 2675 necon3aiOLD 2966 necon2ai 2970 necon2bi 2971 eueq3 3717 ssnpss 4106 psstr 4107 elndif 4133 n0i 4340 axnulALT 5304 nfcvb 5376 zfpair 5421 epelg 5585 onxpdisj 6510 ftpg 7176 nlimsucg 7863 reldmtpos 8259 bren2 9023 sdom0OLD 9149 domunsn 9167 sdom1OLD 9279 1sdom2dom 9283 enp1iOLD 9314 alephval3 10150 cdainflem 10228 ackbij1lem18 10276 isfin4p1 10355 fincssdom 10363 fin23lem41 10392 fin17 10434 fin1a2lem7 10446 axcclem 10497 pwcfsdom 10623 canthp1lem1 10692 hargch 10713 winainflem 10733 ltxrlt 11331 xmullem2 13307 rexmul 13313 xlemul1a 13330 fzdisj 13591 lcmfunsnlem2lem2 16676 smndex1n0mnd 18925 pmtrdifellem4 19497 psgnunilem3 19514 frgpcyg 21592 dvlog2lem 26694 lgsval2lem 27351 elons2 28281 strlem1 32269 chrelat2i 32384 dfrdg4 35952 finminlem 36319 bj-nimn 36564 bj-modald 36674 finxpreclem3 37394 finxpreclem5 37396 hba1-o 38898 hlrelat2 39405 cdleme50ldil 40550 lcmineqlem23 42052 onov0suclim 43287 or3or 44036 stoweidlem14 46029 alneu 47136 2nodd 48088 elsetrecslem 49218 |
| Copyright terms: Public domain | W3C validator |