| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con2i | Structured version Visualization version GIF version | ||
| Description: A contraposition inference. Its associated inference is mt2 200. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Mel L. O'Cat, 28-Nov-2008.) (Proof shortened by Wolf Lammen, 13-Jun-2013.) |
| Ref | Expression |
|---|---|
| con2i.a | ⊢ (𝜑 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| con2i | ⊢ (𝜓 → ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con2i.a | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
| 3 | 1, 2 | nsyl3 138 | 1 ⊢ (𝜓 → ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: nsyl 140 notnot 142 pm2.65i 194 pm3.14 997 pclem6 1027 hba1w 2048 axc4 2320 festinoALT 2669 necon2ai 2955 necon2bi 2956 eueq3 3685 ssnpss 4072 psstr 4073 elndif 4099 n0i 4306 axnulALT 5262 nfcvb 5334 zfpair 5379 epelg 5542 onxpdisj 6463 ftpg 7131 nlimsucg 7821 reldmtpos 8216 bren2 8957 domunsn 9097 sdom1OLD 9197 1sdom2dom 9201 enp1iOLD 9232 alephval3 10070 cdainflem 10148 ackbij1lem18 10196 isfin4p1 10275 fincssdom 10283 fin23lem41 10312 fin17 10354 fin1a2lem7 10366 axcclem 10417 pwcfsdom 10543 canthp1lem1 10612 hargch 10633 winainflem 10653 ltxrlt 11251 xmullem2 13232 rexmul 13238 xlemul1a 13255 fzdisj 13519 lcmfunsnlem2lem2 16616 smndex1n0mnd 18846 pmtrdifellem4 19416 psgnunilem3 19433 frgpcyg 21490 dvlog2lem 26568 lgsval2lem 27225 elons2 28166 strlem1 32186 chrelat2i 32301 onvf1odlem1 35097 dfrdg4 35946 finminlem 36313 bj-nimn 36558 bj-modald 36668 finxpreclem3 37388 finxpreclem5 37390 hba1-o 38897 hlrelat2 39404 cdleme50ldil 40549 lcmineqlem23 42046 onov0suclim 43270 or3or 44019 stoweidlem14 46019 alneu 47129 2nodd 48164 elsetrecslem 49692 |
| Copyright terms: Public domain | W3C validator |