![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > con2i | Structured version Visualization version GIF version |
Description: A contraposition inference. Its associated inference is mt2 199. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Mel L. O'Cat, 28-Nov-2008.) (Proof shortened by Wolf Lammen, 13-Jun-2013.) |
Ref | Expression |
---|---|
con2i.a | ⊢ (𝜑 → ¬ 𝜓) |
Ref | Expression |
---|---|
con2i | ⊢ (𝜓 → ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con2i.a | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
2 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
3 | 1, 2 | nsyl3 138 | 1 ⊢ (𝜓 → ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: nsyl 140 notnot 142 pm2.65i 193 pm3.14 992 pclem6 1022 hba1w 2048 axc4 2312 festinoALT 2668 necon3aiOLD 2964 necon2ai 2968 necon2bi 2969 eueq3 3708 ssnpss 4104 psstr 4105 elndif 4129 n0i 4334 axnulALT 5305 nfcvb 5375 zfpair 5420 epelg 5582 onxpdisj 6491 ftpg 7157 nlimsucg 7835 reldmtpos 8223 bren2 8983 sdom0OLD 9113 domunsn 9131 sdom1OLD 9247 1sdom2dom 9251 enp1iOLD 9284 alephval3 10109 cdainflem 10186 ackbij1lem18 10236 isfin4p1 10314 fincssdom 10322 fin23lem41 10351 fin17 10393 fin1a2lem7 10405 axcclem 10456 pwcfsdom 10582 canthp1lem1 10651 hargch 10672 winainflem 10692 ltxrlt 11290 xmullem2 13250 rexmul 13256 xlemul1a 13273 fzdisj 13534 lcmfunsnlem2lem2 16582 smndex1n0mnd 18831 pmtrdifellem4 19390 psgnunilem3 19407 frgpcyg 21350 dvlog2lem 26394 lgsval2lem 27044 elons2 27922 strlem1 31768 chrelat2i 31883 dfrdg4 35225 finminlem 35508 bj-nimn 35745 bj-modald 35855 finxpreclem3 36579 finxpreclem5 36581 hba1-o 38072 hlrelat2 38579 cdleme50ldil 39724 lcmineqlem23 41224 onov0suclim 42328 or3or 43078 stoweidlem14 45030 alneu 46132 2nodd 46850 elsetrecslem 47833 |
Copyright terms: Public domain | W3C validator |