Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > con2i | Structured version Visualization version GIF version |
Description: A contraposition inference. Its associated inference is mt2 199. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Mel L. O'Cat, 28-Nov-2008.) (Proof shortened by Wolf Lammen, 13-Jun-2013.) |
Ref | Expression |
---|---|
con2i.a | ⊢ (𝜑 → ¬ 𝜓) |
Ref | Expression |
---|---|
con2i | ⊢ (𝜓 → ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con2i.a | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
2 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
3 | 1, 2 | nsyl3 138 | 1 ⊢ (𝜓 → ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: nsyl 140 notnot 142 pm2.65i 193 pm3.14 992 pclem6 1022 hba1w 2051 axc4 2319 festinoALT 2676 necon3aiOLD 2968 necon2ai 2972 necon2bi 2973 eueq3 3641 ssnpss 4034 psstr 4035 elndif 4059 n0i 4264 axnulALT 5223 nfcvb 5294 zfpair 5339 epelg 5487 onxpdisj 6371 ftpg 7010 nlimsucg 7664 reldmtpos 8021 bren2 8726 sdom0 8845 domunsn 8863 sdom1 8952 enp1i 8982 alephval3 9797 cdainflem 9874 ackbij1lem18 9924 isfin4p1 10002 fincssdom 10010 fin23lem41 10039 fin17 10081 fin1a2lem7 10093 axcclem 10144 pwcfsdom 10270 canthp1lem1 10339 hargch 10360 winainflem 10380 ltxrlt 10976 xmullem2 12928 rexmul 12934 xlemul1a 12951 fzdisj 13212 lcmfunsnlem2lem2 16272 smndex1n0mnd 18466 pmtrdifellem4 19002 psgnunilem3 19019 frgpcyg 20693 dvlog2lem 25712 lgsval2lem 26360 strlem1 30513 chrelat2i 30628 dfrdg4 34180 finminlem 34434 bj-nimn 34671 bj-modald 34781 finxpreclem3 35491 finxpreclem5 35493 hba1-o 36838 hlrelat2 37344 cdleme50ldil 38489 lcmineqlem23 39987 sn-dtru 40116 or3or 41520 stoweidlem14 43445 alneu 44503 2nodd 45254 elsetrecslem 46290 |
Copyright terms: Public domain | W3C validator |