![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > con2i | Structured version Visualization version GIF version |
Description: A contraposition inference. Its associated inference is mt2 199. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Mel L. O'Cat, 28-Nov-2008.) (Proof shortened by Wolf Lammen, 13-Jun-2013.) |
Ref | Expression |
---|---|
con2i.a | ⊢ (𝜑 → ¬ 𝜓) |
Ref | Expression |
---|---|
con2i | ⊢ (𝜓 → ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con2i.a | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
2 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
3 | 1, 2 | nsyl3 138 | 1 ⊢ (𝜓 → ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: nsyl 140 notnot 142 pm2.65i 193 pm3.14 994 pclem6 1024 hba1w 2050 axc4 2314 festinoALT 2670 necon3aiOLD 2966 necon2ai 2970 necon2bi 2971 eueq3 3707 ssnpss 4103 psstr 4104 elndif 4128 n0i 4333 axnulALT 5304 nfcvb 5374 zfpair 5419 epelg 5581 onxpdisj 6490 ftpg 7153 nlimsucg 7830 reldmtpos 8218 bren2 8978 sdom0OLD 9108 domunsn 9126 sdom1OLD 9242 1sdom2dom 9246 enp1iOLD 9279 alephval3 10104 cdainflem 10181 ackbij1lem18 10231 isfin4p1 10309 fincssdom 10317 fin23lem41 10346 fin17 10388 fin1a2lem7 10400 axcclem 10451 pwcfsdom 10577 canthp1lem1 10646 hargch 10667 winainflem 10687 ltxrlt 11283 xmullem2 13243 rexmul 13249 xlemul1a 13266 fzdisj 13527 lcmfunsnlem2lem2 16575 smndex1n0mnd 18792 pmtrdifellem4 19346 psgnunilem3 19363 frgpcyg 21128 dvlog2lem 26159 lgsval2lem 26807 strlem1 31498 chrelat2i 31613 dfrdg4 34918 finminlem 35198 bj-nimn 35435 bj-modald 35545 finxpreclem3 36269 finxpreclem5 36271 hba1-o 37762 hlrelat2 38269 cdleme50ldil 39414 lcmineqlem23 40911 onov0suclim 42014 or3or 42764 stoweidlem14 44720 alneu 45822 2nodd 46572 elsetrecslem 47734 |
Copyright terms: Public domain | W3C validator |