| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con2i | Structured version Visualization version GIF version | ||
| Description: A contraposition inference. Its associated inference is mt2 200. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Mel L. O'Cat, 28-Nov-2008.) (Proof shortened by Wolf Lammen, 13-Jun-2013.) |
| Ref | Expression |
|---|---|
| con2i.a | ⊢ (𝜑 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| con2i | ⊢ (𝜓 → ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con2i.a | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
| 3 | 1, 2 | nsyl3 138 | 1 ⊢ (𝜓 → ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: nsyl 140 notnot 142 pm2.65i 194 pm3.14 997 pclem6 1027 hba1w 2048 axc4 2320 festinoALT 2668 necon2ai 2954 necon2bi 2955 eueq3 3682 ssnpss 4069 psstr 4070 elndif 4096 n0i 4303 axnulALT 5259 nfcvb 5331 zfpair 5376 epelg 5539 onxpdisj 6460 ftpg 7128 nlimsucg 7818 reldmtpos 8213 bren2 8954 domunsn 9091 sdom1OLD 9190 1sdom2dom 9194 enp1iOLD 9225 alephval3 10063 cdainflem 10141 ackbij1lem18 10189 isfin4p1 10268 fincssdom 10276 fin23lem41 10305 fin17 10347 fin1a2lem7 10359 axcclem 10410 pwcfsdom 10536 canthp1lem1 10605 hargch 10626 winainflem 10646 ltxrlt 11244 xmullem2 13225 rexmul 13231 xlemul1a 13248 fzdisj 13512 lcmfunsnlem2lem2 16609 smndex1n0mnd 18839 pmtrdifellem4 19409 psgnunilem3 19426 frgpcyg 21483 dvlog2lem 26561 lgsval2lem 27218 elons2 28159 strlem1 32179 chrelat2i 32294 onvf1odlem1 35090 dfrdg4 35939 finminlem 36306 bj-nimn 36551 bj-modald 36661 finxpreclem3 37381 finxpreclem5 37383 hba1-o 38890 hlrelat2 39397 cdleme50ldil 40542 lcmineqlem23 42039 onov0suclim 43263 or3or 44012 stoweidlem14 46012 alneu 47125 2nodd 48160 elsetrecslem 49688 |
| Copyright terms: Public domain | W3C validator |