| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon3ai | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 23-May-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 28-Oct-2024.) |
| Ref | Expression |
|---|---|
| necon3ai.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| necon3ai | ⊢ (𝐴 ≠ 𝐵 → ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neneq 2932 | . 2 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 = 𝐵) | |
| 2 | necon3ai.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 1, 2 | nsyl 140 | 1 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2927 |
| This theorem is referenced by: necon1ai 2953 necon3i 2958 neneor 3026 nelsn 4633 disjsn2 4679 prnesn 4827 opelopabsb 5493 funsndifnop 7126 ord1eln01 8463 map0b 8859 mapdom3 9119 cflim2 10223 isfin4p1 10275 fpwwe2lem12 10602 tskuni 10743 recextlem2 11816 hashprg 14367 eqsqrt2d 15342 gcd1 16505 gcdzeq 16529 lcmfunsnlem2lem1 16615 lcmfunsnlem2lem2 16616 phimullem 16756 pcgcd1 16855 pc2dvds 16857 pockthlem 16883 ablfacrplem 20004 znrrg 21482 opnfbas 23736 supfil 23789 itg1addlem4 25607 itg1addlem5 25608 mpodvdsmulf1o 27111 dvdsmulf1o 27113 ppiub 27122 dchrelbas4 27161 2sqlem8 27344 tgldimor 28436 subfacp1lem6 35179 cvmsss2 35268 ax6e2ndeq 44556 supminfxr2 45472 fourierdlem56 46167 ichnreuop 47477 |
| Copyright terms: Public domain | W3C validator |