Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > necon3ai | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 23-May-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 28-Oct-2024.) |
Ref | Expression |
---|---|
necon3ai.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
necon3ai | ⊢ (𝐴 ≠ 𝐵 → ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neneq 2948 | . 2 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 = 𝐵) | |
2 | necon3ai.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 1, 2 | nsyl 140 | 1 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ≠ wne 2942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2943 |
This theorem is referenced by: necon1ai 2970 necon3i 2975 neneor 3043 nelsn 4598 disjsn2 4645 prnesn 4787 opelopabsb 5436 funsndifnop 7005 map0b 8629 mapdom3 8885 cflim2 9950 isfin4p1 10002 fpwwe2lem12 10329 tskuni 10470 recextlem2 11536 hashprg 14038 eqsqrt2d 15008 gcd1 16163 gcdzeq 16190 lcmfunsnlem2lem1 16271 lcmfunsnlem2lem2 16272 phimullem 16408 pcgcd1 16506 pc2dvds 16508 pockthlem 16534 ablfacrplem 19583 znrrg 20685 opnfbas 22901 supfil 22954 itg1addlem4 24768 itg1addlem4OLD 24769 itg1addlem5 24770 dvdsmulf1o 26248 ppiub 26257 dchrelbas4 26296 2sqlem8 26479 tgldimor 26767 subfacp1lem6 33047 cvmsss2 33136 ax6e2ndeq 42068 supminfxr2 42899 fourierdlem56 43593 ichnreuop 44812 |
Copyright terms: Public domain | W3C validator |