![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon3ai | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 23-May-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 28-Oct-2024.) |
Ref | Expression |
---|---|
necon3ai.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
necon3ai | ⊢ (𝐴 ≠ 𝐵 → ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neneq 2944 | . 2 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 = 𝐵) | |
2 | necon3ai.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 1, 2 | nsyl 140 | 1 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ≠ wne 2938 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2939 |
This theorem is referenced by: necon1ai 2966 necon3i 2971 neneor 3040 nelsn 4667 disjsn2 4715 prnesn 4859 opelopabsb 5529 funsndifnop 7150 ord1eln01 8498 map0b 8879 mapdom3 9151 cflim2 10260 isfin4p1 10312 fpwwe2lem12 10639 tskuni 10780 recextlem2 11849 hashprg 14359 eqsqrt2d 15319 gcd1 16473 gcdzeq 16498 lcmfunsnlem2lem1 16579 lcmfunsnlem2lem2 16580 phimullem 16716 pcgcd1 16814 pc2dvds 16816 pockthlem 16842 ablfacrplem 19976 znrrg 21340 opnfbas 23566 supfil 23619 itg1addlem4 25448 itg1addlem4OLD 25449 itg1addlem5 25450 dvdsmulf1o 26934 ppiub 26943 dchrelbas4 26982 2sqlem8 27165 tgldimor 28020 subfacp1lem6 34474 cvmsss2 34563 ax6e2ndeq 43622 supminfxr2 44477 fourierdlem56 45176 ichnreuop 46438 |
Copyright terms: Public domain | W3C validator |