| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon3ai | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 23-May-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 28-Oct-2024.) |
| Ref | Expression |
|---|---|
| necon3ai.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| necon3ai | ⊢ (𝐴 ≠ 𝐵 → ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neneq 2931 | . 2 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 = 𝐵) | |
| 2 | necon3ai.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 1, 2 | nsyl 140 | 1 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2926 |
| This theorem is referenced by: necon1ai 2952 necon3i 2957 neneor 3025 nelsn 4630 disjsn2 4676 prnesn 4824 opelopabsb 5490 funsndifnop 7123 ord1eln01 8460 map0b 8856 mapdom3 9113 cflim2 10216 isfin4p1 10268 fpwwe2lem12 10595 tskuni 10736 recextlem2 11809 hashprg 14360 eqsqrt2d 15335 gcd1 16498 gcdzeq 16522 lcmfunsnlem2lem1 16608 lcmfunsnlem2lem2 16609 phimullem 16749 pcgcd1 16848 pc2dvds 16850 pockthlem 16876 ablfacrplem 19997 znrrg 21475 opnfbas 23729 supfil 23782 itg1addlem4 25600 itg1addlem5 25601 mpodvdsmulf1o 27104 dvdsmulf1o 27106 ppiub 27115 dchrelbas4 27154 2sqlem8 27337 tgldimor 28429 subfacp1lem6 35172 cvmsss2 35261 ax6e2ndeq 44549 supminfxr2 45465 fourierdlem56 46160 ichnreuop 47473 |
| Copyright terms: Public domain | W3C validator |