![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon3ai | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 23-May-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 28-Oct-2024.) |
Ref | Expression |
---|---|
necon3ai.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
necon3ai | ⊢ (𝐴 ≠ 𝐵 → ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neneq 2952 | . 2 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 = 𝐵) | |
2 | necon3ai.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 1, 2 | nsyl 140 | 1 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ≠ wne 2946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-ne 2947 |
This theorem is referenced by: necon1ai 2974 necon3i 2979 neneor 3048 nelsn 4688 disjsn2 4737 prnesn 4884 opelopabsb 5549 funsndifnop 7185 ord1eln01 8552 map0b 8941 mapdom3 9215 cflim2 10332 isfin4p1 10384 fpwwe2lem12 10711 tskuni 10852 recextlem2 11921 hashprg 14444 eqsqrt2d 15417 gcd1 16574 gcdzeq 16599 lcmfunsnlem2lem1 16685 lcmfunsnlem2lem2 16686 phimullem 16826 pcgcd1 16924 pc2dvds 16926 pockthlem 16952 ablfacrplem 20109 znrrg 21607 opnfbas 23871 supfil 23924 itg1addlem4 25753 itg1addlem4OLD 25754 itg1addlem5 25755 mpodvdsmulf1o 27255 dvdsmulf1o 27257 ppiub 27266 dchrelbas4 27305 2sqlem8 27488 tgldimor 28528 subfacp1lem6 35153 cvmsss2 35242 ax6e2ndeq 44530 supminfxr2 45384 fourierdlem56 46083 ichnreuop 47346 |
Copyright terms: Public domain | W3C validator |