| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon3ai | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 23-May-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 28-Oct-2024.) |
| Ref | Expression |
|---|---|
| necon3ai.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| necon3ai | ⊢ (𝐴 ≠ 𝐵 → ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neneq 2935 | . 2 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 = 𝐵) | |
| 2 | necon3ai.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 1, 2 | nsyl 140 | 1 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ≠ wne 2929 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2930 |
| This theorem is referenced by: necon1ai 2956 necon3i 2961 neneor 3029 nelsn 4618 disjsn2 4664 prnesn 4811 opelopabsb 5473 funsndifnop 7090 ord1eln01 8417 map0b 8813 mapdom3 9069 cflim2 10161 isfin4p1 10213 fpwwe2lem12 10540 tskuni 10681 recextlem2 11755 hashprg 14304 eqsqrt2d 15278 gcd1 16441 gcdzeq 16465 lcmfunsnlem2lem1 16551 lcmfunsnlem2lem2 16552 phimullem 16692 pcgcd1 16791 pc2dvds 16793 pockthlem 16819 ablfacrplem 19981 znrrg 21504 opnfbas 23758 supfil 23811 itg1addlem4 25628 itg1addlem5 25629 mpodvdsmulf1o 27132 dvdsmulf1o 27134 ppiub 27143 dchrelbas4 27182 2sqlem8 27365 tgldimor 28481 subfacp1lem6 35250 cvmsss2 35339 ax6e2ndeq 44676 supminfxr2 45591 fourierdlem56 46284 ichnreuop 47596 |
| Copyright terms: Public domain | W3C validator |