![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon3ai | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 23-May-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 28-Oct-2024.) |
Ref | Expression |
---|---|
necon3ai.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
necon3ai | ⊢ (𝐴 ≠ 𝐵 → ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neneq 2943 | . 2 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 = 𝐵) | |
2 | necon3ai.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 1, 2 | nsyl 140 | 1 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1536 ≠ wne 2937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-ne 2938 |
This theorem is referenced by: necon1ai 2965 necon3i 2970 neneor 3039 nelsn 4670 disjsn2 4716 prnesn 4864 opelopabsb 5539 funsndifnop 7170 ord1eln01 8532 map0b 8921 mapdom3 9187 cflim2 10300 isfin4p1 10352 fpwwe2lem12 10679 tskuni 10820 recextlem2 11891 hashprg 14430 eqsqrt2d 15403 gcd1 16561 gcdzeq 16585 lcmfunsnlem2lem1 16671 lcmfunsnlem2lem2 16672 phimullem 16812 pcgcd1 16910 pc2dvds 16912 pockthlem 16938 ablfacrplem 20099 znrrg 21601 opnfbas 23865 supfil 23918 itg1addlem4 25747 itg1addlem4OLD 25748 itg1addlem5 25749 mpodvdsmulf1o 27251 dvdsmulf1o 27253 ppiub 27262 dchrelbas4 27301 2sqlem8 27484 tgldimor 28524 subfacp1lem6 35169 cvmsss2 35258 ax6e2ndeq 44556 supminfxr2 45418 fourierdlem56 46117 ichnreuop 47396 |
Copyright terms: Public domain | W3C validator |