![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon3ai | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 23-May-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 28-Oct-2024.) |
Ref | Expression |
---|---|
necon3ai.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
necon3ai | ⊢ (𝐴 ≠ 𝐵 → ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neneq 2945 | . 2 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 = 𝐵) | |
2 | necon3ai.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 1, 2 | nsyl 140 | 1 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2939 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2940 |
This theorem is referenced by: necon1ai 2967 necon3i 2972 neneor 3041 nelsn 4668 disjsn2 4716 prnesn 4860 opelopabsb 5530 funsndifnop 7151 ord1eln01 8499 map0b 8880 mapdom3 9152 cflim2 10261 isfin4p1 10313 fpwwe2lem12 10640 tskuni 10781 recextlem2 11850 hashprg 14360 eqsqrt2d 15320 gcd1 16474 gcdzeq 16499 lcmfunsnlem2lem1 16580 lcmfunsnlem2lem2 16581 phimullem 16717 pcgcd1 16815 pc2dvds 16817 pockthlem 16843 ablfacrplem 19977 znrrg 21341 opnfbas 23567 supfil 23620 itg1addlem4 25449 itg1addlem4OLD 25450 itg1addlem5 25451 dvdsmulf1o 26935 ppiub 26944 dchrelbas4 26983 2sqlem8 27166 tgldimor 28021 subfacp1lem6 34475 cvmsss2 34564 ax6e2ndeq 43623 supminfxr2 44478 fourierdlem56 45177 ichnreuop 46439 |
Copyright terms: Public domain | W3C validator |