| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon3ai | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 23-May-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 28-Oct-2024.) |
| Ref | Expression |
|---|---|
| necon3ai.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| necon3ai | ⊢ (𝐴 ≠ 𝐵 → ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neneq 2934 | . 2 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 = 𝐵) | |
| 2 | necon3ai.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 1, 2 | nsyl 140 | 1 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ≠ wne 2928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2929 |
| This theorem is referenced by: necon1ai 2955 necon3i 2960 neneor 3028 nelsn 4619 disjsn2 4665 prnesn 4812 opelopabsb 5470 funsndifnop 7084 ord1eln01 8411 map0b 8807 mapdom3 9062 cflim2 10151 isfin4p1 10203 fpwwe2lem12 10530 tskuni 10671 recextlem2 11745 hashprg 14299 eqsqrt2d 15273 gcd1 16436 gcdzeq 16460 lcmfunsnlem2lem1 16546 lcmfunsnlem2lem2 16547 phimullem 16687 pcgcd1 16786 pc2dvds 16788 pockthlem 16814 ablfacrplem 19977 znrrg 21500 opnfbas 23755 supfil 23808 itg1addlem4 25625 itg1addlem5 25626 mpodvdsmulf1o 27129 dvdsmulf1o 27131 ppiub 27140 dchrelbas4 27179 2sqlem8 27362 tgldimor 28478 subfacp1lem6 35217 cvmsss2 35306 ax6e2ndeq 44591 supminfxr2 45506 fourierdlem56 46199 ichnreuop 47502 |
| Copyright terms: Public domain | W3C validator |