![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon3ai | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 23-May-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 28-Oct-2024.) |
Ref | Expression |
---|---|
necon3ai.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
necon3ai | ⊢ (𝐴 ≠ 𝐵 → ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neneq 2947 | . 2 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 = 𝐵) | |
2 | necon3ai.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 1, 2 | nsyl 140 | 1 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1542 ≠ wne 2941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2942 |
This theorem is referenced by: necon1ai 2969 necon3i 2974 neneor 3043 nelsn 4669 disjsn2 4717 prnesn 4861 opelopabsb 5531 funsndifnop 7149 ord1eln01 8496 map0b 8877 mapdom3 9149 cflim2 10258 isfin4p1 10310 fpwwe2lem12 10637 tskuni 10778 recextlem2 11845 hashprg 14355 eqsqrt2d 15315 gcd1 16469 gcdzeq 16494 lcmfunsnlem2lem1 16575 lcmfunsnlem2lem2 16576 phimullem 16712 pcgcd1 16810 pc2dvds 16812 pockthlem 16838 ablfacrplem 19935 znrrg 21121 opnfbas 23346 supfil 23399 itg1addlem4 25216 itg1addlem4OLD 25217 itg1addlem5 25218 dvdsmulf1o 26698 ppiub 26707 dchrelbas4 26746 2sqlem8 26929 tgldimor 27753 subfacp1lem6 34176 cvmsss2 34265 ax6e2ndeq 43320 supminfxr2 44179 fourierdlem56 44878 ichnreuop 46140 |
Copyright terms: Public domain | W3C validator |