Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > necon3ai | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 23-May-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
necon3ai.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
necon3ai | ⊢ (𝐴 ≠ 𝐵 → ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon3ai.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | nne 2938 | . . 3 ⊢ (¬ 𝐴 ≠ 𝐵 ↔ 𝐴 = 𝐵) | |
3 | 1, 2 | sylibr 237 | . 2 ⊢ (𝜑 → ¬ 𝐴 ≠ 𝐵) |
4 | 3 | con2i 141 | 1 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1542 ≠ wne 2934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-ne 2935 |
This theorem is referenced by: necon1ai 2961 necon3i 2966 neneor 3033 nelsn 4553 disjsn2 4600 prnesn 4742 opelopabsb 5382 funsndifnop 6917 map0b 8486 mapdom3 8732 cflim2 9756 isfin4p1 9808 fpwwe2lem12 10135 tskuni 10276 recextlem2 11342 hashprg 13841 eqsqrt2d 14811 gcd1 15964 gcdzeq 15991 lcmfunsnlem2lem1 16072 lcmfunsnlem2lem2 16073 phimullem 16209 pcgcd1 16306 pc2dvds 16308 pockthlem 16334 ablfacrplem 19299 znrrg 20377 opnfbas 22586 supfil 22639 itg1addlem4 24444 itg1addlem5 24445 dvdsmulf1o 25923 ppiub 25932 dchrelbas4 25971 2sqlem8 26154 tgldimor 26440 subfacp1lem6 32710 cvmsss2 32799 ax6e2ndeq 41701 supminfxr2 42533 fourierdlem56 43229 ichnreuop 44442 |
Copyright terms: Public domain | W3C validator |