| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon3ai | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 23-May-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 28-Oct-2024.) |
| Ref | Expression |
|---|---|
| necon3ai.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| necon3ai | ⊢ (𝐴 ≠ 𝐵 → ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neneq 2938 | . 2 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 = 𝐵) | |
| 2 | necon3ai.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 1, 2 | nsyl 140 | 1 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2932 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2933 |
| This theorem is referenced by: necon1ai 2959 necon3i 2964 neneor 3032 nelsn 4642 disjsn2 4688 prnesn 4836 opelopabsb 5505 funsndifnop 7141 ord1eln01 8508 map0b 8897 mapdom3 9163 cflim2 10277 isfin4p1 10329 fpwwe2lem12 10656 tskuni 10797 recextlem2 11868 hashprg 14413 eqsqrt2d 15387 gcd1 16547 gcdzeq 16571 lcmfunsnlem2lem1 16657 lcmfunsnlem2lem2 16658 phimullem 16798 pcgcd1 16897 pc2dvds 16899 pockthlem 16925 ablfacrplem 20048 znrrg 21526 opnfbas 23780 supfil 23833 itg1addlem4 25652 itg1addlem5 25653 mpodvdsmulf1o 27156 dvdsmulf1o 27158 ppiub 27167 dchrelbas4 27206 2sqlem8 27389 tgldimor 28481 subfacp1lem6 35207 cvmsss2 35296 ax6e2ndeq 44584 supminfxr2 45496 fourierdlem56 46191 ichnreuop 47486 |
| Copyright terms: Public domain | W3C validator |