| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon3ai | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 23-May-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 28-Oct-2024.) |
| Ref | Expression |
|---|---|
| necon3ai.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| necon3ai | ⊢ (𝐴 ≠ 𝐵 → ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neneq 2931 | . 2 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 = 𝐵) | |
| 2 | necon3ai.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 1, 2 | nsyl 140 | 1 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2926 |
| This theorem is referenced by: necon1ai 2952 necon3i 2957 neneor 3025 nelsn 4620 disjsn2 4666 prnesn 4814 opelopabsb 5477 funsndifnop 7089 ord1eln01 8421 map0b 8817 mapdom3 9073 cflim2 10176 isfin4p1 10228 fpwwe2lem12 10555 tskuni 10696 recextlem2 11769 hashprg 14320 eqsqrt2d 15294 gcd1 16457 gcdzeq 16481 lcmfunsnlem2lem1 16567 lcmfunsnlem2lem2 16568 phimullem 16708 pcgcd1 16807 pc2dvds 16809 pockthlem 16835 ablfacrplem 19964 znrrg 21490 opnfbas 23745 supfil 23798 itg1addlem4 25616 itg1addlem5 25617 mpodvdsmulf1o 27120 dvdsmulf1o 27122 ppiub 27131 dchrelbas4 27170 2sqlem8 27353 tgldimor 28465 subfacp1lem6 35157 cvmsss2 35246 ax6e2ndeq 44533 supminfxr2 45449 fourierdlem56 46144 ichnreuop 47457 |
| Copyright terms: Public domain | W3C validator |