| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon3bi | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 1-Jun-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon3bi.1 | ⊢ (𝐴 = 𝐵 → 𝜑) |
| Ref | Expression |
|---|---|
| necon3bi | ⊢ (¬ 𝜑 → 𝐴 ≠ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon3bi.1 | . . 3 ⊢ (𝐴 = 𝐵 → 𝜑) | |
| 2 | 1 | con3i 154 | . 2 ⊢ (¬ 𝜑 → ¬ 𝐴 = 𝐵) |
| 3 | 2 | neqned 2932 | 1 ⊢ (¬ 𝜑 → 𝐴 ≠ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2926 |
| This theorem is referenced by: r19.2zb 4449 pwne 5295 alephord 9988 ackbij1lem18 10149 fin23lem26 10238 fin1a2lem6 10318 alephom 10498 gchxpidm 10582 egt2lt3 16133 nn0onn 16309 prmodvdslcmf 16977 symgfix2 19313 alexsubALTlem2 23951 alexsubALTlem4 23953 ptcmplem2 23956 nmoid 24646 cxplogb 26712 axlowdimlem17 28921 frgrncvvdeq 30271 hashxpe 32765 hasheuni 34051 limsucncmpi 36418 matunitlindflem1 37595 poimirlem32 37631 ovoliunnfl 37641 voliunnfl 37643 volsupnfl 37644 dvasin 37683 lsat0cv 39011 unitscyglem4 42171 readvrec2 42334 readvrec 42335 pellexlem5 42806 uzfissfz 45306 xralrple2 45334 infxr 45347 icccncfext 45869 ioodvbdlimc1lem1 45913 volioc 45954 fourierdlem32 46121 fourierdlem49 46137 fourierdlem73 46161 fourierswlem 46212 fouriersw 46213 sge0pr 46376 voliunsge0lem 46454 carageniuncl 46505 isomenndlem 46512 hoimbl 46613 |
| Copyright terms: Public domain | W3C validator |