MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon3bi Structured version   Visualization version   GIF version

Theorem necon3bi 2967
Description: Contrapositive inference for inequality. (Contributed by NM, 1-Jun-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 22-Nov-2019.)
Hypothesis
Ref Expression
necon3bi.1 (𝐴 = 𝐵𝜑)
Assertion
Ref Expression
necon3bi 𝜑𝐴𝐵)

Proof of Theorem necon3bi
StepHypRef Expression
1 necon3bi.1 . . 3 (𝐴 = 𝐵𝜑)
21con3i 154 . 2 𝜑 → ¬ 𝐴 = 𝐵)
32neqned 2947 1 𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wne 2940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-ne 2941
This theorem is referenced by:  r19.2zb  4495  pwne  5350  onnevOLD  6492  alephord  10072  ackbij1lem18  10234  fin23lem26  10322  fin1a2lem6  10402  alephom  10582  gchxpidm  10666  egt2lt3  16151  nn0onn  16325  prmodvdslcmf  16982  symgfix2  19286  alexsubALTlem2  23559  alexsubALTlem4  23561  ptcmplem2  23564  nmoid  24266  cxplogb  26298  axlowdimlem17  28254  frgrncvvdeq  29600  hashxpe  32057  hasheuni  33152  limsucncmpi  35416  matunitlindflem1  36570  poimirlem32  36606  ovoliunnfl  36616  voliunnfl  36618  volsupnfl  36619  dvasin  36658  lsat0cv  37989  metakunt24  41094  pellexlem5  41653  uzfissfz  44115  xralrple2  44143  infxr  44156  icccncfext  44682  ioodvbdlimc1lem1  44726  volioc  44767  fourierdlem32  44934  fourierdlem49  44950  fourierdlem73  44974  fourierswlem  45025  fouriersw  45026  sge0pr  45189  voliunsge0lem  45267  carageniuncl  45318  isomenndlem  45325  hoimbl  45426
  Copyright terms: Public domain W3C validator