| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon3bi | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 1-Jun-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon3bi.1 | ⊢ (𝐴 = 𝐵 → 𝜑) |
| Ref | Expression |
|---|---|
| necon3bi | ⊢ (¬ 𝜑 → 𝐴 ≠ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon3bi.1 | . . 3 ⊢ (𝐴 = 𝐵 → 𝜑) | |
| 2 | 1 | con3i 154 | . 2 ⊢ (¬ 𝜑 → ¬ 𝐴 = 𝐵) |
| 3 | 2 | neqned 2938 | 1 ⊢ (¬ 𝜑 → 𝐴 ≠ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ≠ wne 2931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2932 |
| This theorem is referenced by: r19.2zb 4476 pwne 5333 alephord 10097 ackbij1lem18 10258 fin23lem26 10347 fin1a2lem6 10427 alephom 10607 gchxpidm 10691 egt2lt3 16225 nn0onn 16400 prmodvdslcmf 17068 symgfix2 19403 alexsubALTlem2 24003 alexsubALTlem4 24005 ptcmplem2 24008 nmoid 24700 cxplogb 26766 axlowdimlem17 28904 frgrncvvdeq 30257 hashxpe 32755 hasheuni 34061 limsucncmpi 36421 matunitlindflem1 37598 poimirlem32 37634 ovoliunnfl 37644 voliunnfl 37646 volsupnfl 37647 dvasin 37686 lsat0cv 39009 unitscyglem4 42174 metakunt24 42204 readvrec2 42370 readvrec 42371 pellexlem5 42822 uzfissfz 45309 xralrple2 45337 infxr 45350 icccncfext 45874 ioodvbdlimc1lem1 45918 volioc 45959 fourierdlem32 46126 fourierdlem49 46142 fourierdlem73 46166 fourierswlem 46217 fouriersw 46218 sge0pr 46381 voliunsge0lem 46459 carageniuncl 46510 isomenndlem 46517 hoimbl 46618 |
| Copyright terms: Public domain | W3C validator |