| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon3bi | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 1-Jun-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon3bi.1 | ⊢ (𝐴 = 𝐵 → 𝜑) |
| Ref | Expression |
|---|---|
| necon3bi | ⊢ (¬ 𝜑 → 𝐴 ≠ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon3bi.1 | . . 3 ⊢ (𝐴 = 𝐵 → 𝜑) | |
| 2 | 1 | con3i 154 | . 2 ⊢ (¬ 𝜑 → ¬ 𝐴 = 𝐵) |
| 3 | 2 | neqned 2932 | 1 ⊢ (¬ 𝜑 → 𝐴 ≠ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2926 |
| This theorem is referenced by: r19.2zb 4459 pwne 5308 alephord 10028 ackbij1lem18 10189 fin23lem26 10278 fin1a2lem6 10358 alephom 10538 gchxpidm 10622 egt2lt3 16174 nn0onn 16350 prmodvdslcmf 17018 symgfix2 19346 alexsubALTlem2 23935 alexsubALTlem4 23937 ptcmplem2 23940 nmoid 24630 cxplogb 26696 axlowdimlem17 28885 frgrncvvdeq 30238 hashxpe 32732 hasheuni 34075 limsucncmpi 36433 matunitlindflem1 37610 poimirlem32 37646 ovoliunnfl 37656 voliunnfl 37658 volsupnfl 37659 dvasin 37698 lsat0cv 39026 unitscyglem4 42186 readvrec2 42349 readvrec 42350 pellexlem5 42821 uzfissfz 45322 xralrple2 45350 infxr 45363 icccncfext 45885 ioodvbdlimc1lem1 45929 volioc 45970 fourierdlem32 46137 fourierdlem49 46153 fourierdlem73 46177 fourierswlem 46228 fouriersw 46229 sge0pr 46392 voliunsge0lem 46470 carageniuncl 46521 isomenndlem 46528 hoimbl 46629 |
| Copyright terms: Public domain | W3C validator |