| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon3bi | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 1-Jun-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon3bi.1 | ⊢ (𝐴 = 𝐵 → 𝜑) |
| Ref | Expression |
|---|---|
| necon3bi | ⊢ (¬ 𝜑 → 𝐴 ≠ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon3bi.1 | . . 3 ⊢ (𝐴 = 𝐵 → 𝜑) | |
| 2 | 1 | con3i 154 | . 2 ⊢ (¬ 𝜑 → ¬ 𝐴 = 𝐵) |
| 3 | 2 | neqned 2936 | 1 ⊢ (¬ 𝜑 → 𝐴 ≠ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ≠ wne 2929 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2930 |
| This theorem is referenced by: r19.2zb 4445 pwne 5293 alephord 9973 ackbij1lem18 10134 fin23lem26 10223 fin1a2lem6 10303 alephom 10483 gchxpidm 10567 egt2lt3 16117 nn0onn 16293 prmodvdslcmf 16961 chnccat 18534 symgfix2 19330 alexsubALTlem2 23964 alexsubALTlem4 23966 ptcmplem2 23969 nmoid 24658 cxplogb 26724 axlowdimlem17 28938 frgrncvvdeq 30291 hashxpe 32794 hasheuni 34119 fineqvnttrclse 35165 limsucncmpi 36510 matunitlindflem1 37677 poimirlem32 37713 ovoliunnfl 37723 voliunnfl 37725 volsupnfl 37726 dvasin 37765 lsat0cv 39153 unitscyglem4 42312 readvrec2 42480 readvrec 42481 pellexlem5 42951 uzfissfz 45450 xralrple2 45478 infxr 45490 icccncfext 46010 ioodvbdlimc1lem1 46054 volioc 46095 fourierdlem32 46262 fourierdlem49 46278 fourierdlem73 46302 fourierswlem 46353 fouriersw 46354 sge0pr 46517 voliunsge0lem 46595 carageniuncl 46646 isomenndlem 46653 hoimbl 46754 |
| Copyright terms: Public domain | W3C validator |