![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon3bi | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 1-Jun-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
Ref | Expression |
---|---|
necon3bi.1 | ⊢ (𝐴 = 𝐵 → 𝜑) |
Ref | Expression |
---|---|
necon3bi | ⊢ (¬ 𝜑 → 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon3bi.1 | . . 3 ⊢ (𝐴 = 𝐵 → 𝜑) | |
2 | 1 | con3i 154 | . 2 ⊢ (¬ 𝜑 → ¬ 𝐴 = 𝐵) |
3 | 2 | neqned 2947 | 1 ⊢ (¬ 𝜑 → 𝐴 ≠ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ≠ wne 2940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2941 |
This theorem is referenced by: r19.2zb 4495 pwne 5350 onnevOLD 6492 alephord 10072 ackbij1lem18 10234 fin23lem26 10322 fin1a2lem6 10402 alephom 10582 gchxpidm 10666 egt2lt3 16151 nn0onn 16325 prmodvdslcmf 16982 symgfix2 19286 alexsubALTlem2 23559 alexsubALTlem4 23561 ptcmplem2 23564 nmoid 24266 cxplogb 26298 axlowdimlem17 28254 frgrncvvdeq 29600 hashxpe 32057 hasheuni 33152 limsucncmpi 35416 matunitlindflem1 36570 poimirlem32 36606 ovoliunnfl 36616 voliunnfl 36618 volsupnfl 36619 dvasin 36658 lsat0cv 37989 metakunt24 41094 pellexlem5 41653 uzfissfz 44115 xralrple2 44143 infxr 44156 icccncfext 44682 ioodvbdlimc1lem1 44726 volioc 44767 fourierdlem32 44934 fourierdlem49 44950 fourierdlem73 44974 fourierswlem 45025 fouriersw 45026 sge0pr 45189 voliunsge0lem 45267 carageniuncl 45318 isomenndlem 45325 hoimbl 45426 |
Copyright terms: Public domain | W3C validator |