Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > necon3bi | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 1-Jun-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
Ref | Expression |
---|---|
necon3bi.1 | ⊢ (𝐴 = 𝐵 → 𝜑) |
Ref | Expression |
---|---|
necon3bi | ⊢ (¬ 𝜑 → 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon3bi.1 | . . 3 ⊢ (𝐴 = 𝐵 → 𝜑) | |
2 | 1 | con3i 154 | . 2 ⊢ (¬ 𝜑 → ¬ 𝐴 = 𝐵) |
3 | 2 | neqned 2949 | 1 ⊢ (¬ 𝜑 → 𝐴 ≠ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ≠ wne 2942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2943 |
This theorem is referenced by: r19.2zb 4423 pwne 5268 onnevOLD 6373 alephord 9762 ackbij1lem18 9924 fin23lem26 10012 fin1a2lem6 10092 alephom 10272 gchxpidm 10356 egt2lt3 15843 nn0onn 16017 prmodvdslcmf 16676 symgfix2 18939 alexsubALTlem2 23107 alexsubALTlem4 23109 ptcmplem2 23112 nmoid 23812 cxplogb 25841 axlowdimlem17 27229 frgrncvvdeq 28574 hashxpe 31029 hasheuni 31953 limsucncmpi 34561 matunitlindflem1 35700 poimirlem32 35736 ovoliunnfl 35746 voliunnfl 35748 volsupnfl 35749 dvasin 35788 lsat0cv 36974 metakunt24 40076 pellexlem5 40571 uzfissfz 42755 xralrple2 42783 infxr 42796 icccncfext 43318 ioodvbdlimc1lem1 43362 volioc 43403 fourierdlem32 43570 fourierdlem49 43586 fourierdlem73 43610 fourierswlem 43661 fouriersw 43662 sge0pr 43822 voliunsge0lem 43900 carageniuncl 43951 isomenndlem 43958 hoimbl 44059 |
Copyright terms: Public domain | W3C validator |