![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon3bi | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 1-Jun-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
Ref | Expression |
---|---|
necon3bi.1 | ⊢ (𝐴 = 𝐵 → 𝜑) |
Ref | Expression |
---|---|
necon3bi | ⊢ (¬ 𝜑 → 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon3bi.1 | . . 3 ⊢ (𝐴 = 𝐵 → 𝜑) | |
2 | 1 | con3i 154 | . 2 ⊢ (¬ 𝜑 → ¬ 𝐴 = 𝐵) |
3 | 2 | neqned 2945 | 1 ⊢ (¬ 𝜑 → 𝐴 ≠ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ≠ wne 2938 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-ne 2939 |
This theorem is referenced by: r19.2zb 4502 pwne 5359 alephord 10113 ackbij1lem18 10274 fin23lem26 10363 fin1a2lem6 10443 alephom 10623 gchxpidm 10707 egt2lt3 16239 nn0onn 16414 prmodvdslcmf 17081 symgfix2 19449 alexsubALTlem2 24072 alexsubALTlem4 24074 ptcmplem2 24077 nmoid 24779 cxplogb 26844 axlowdimlem17 28988 frgrncvvdeq 30338 hashxpe 32817 hasheuni 34066 limsucncmpi 36428 matunitlindflem1 37603 poimirlem32 37639 ovoliunnfl 37649 voliunnfl 37651 volsupnfl 37652 dvasin 37691 lsat0cv 39015 unitscyglem4 42180 metakunt24 42210 readvrec2 42370 readvrec 42371 pellexlem5 42821 uzfissfz 45276 xralrple2 45304 infxr 45317 icccncfext 45843 ioodvbdlimc1lem1 45887 volioc 45928 fourierdlem32 46095 fourierdlem49 46111 fourierdlem73 46135 fourierswlem 46186 fouriersw 46187 sge0pr 46350 voliunsge0lem 46428 carageniuncl 46479 isomenndlem 46486 hoimbl 46587 |
Copyright terms: Public domain | W3C validator |