![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon3bi | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 1-Jun-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
Ref | Expression |
---|---|
necon3bi.1 | ⊢ (𝐴 = 𝐵 → 𝜑) |
Ref | Expression |
---|---|
necon3bi | ⊢ (¬ 𝜑 → 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon3bi.1 | . . 3 ⊢ (𝐴 = 𝐵 → 𝜑) | |
2 | 1 | con3i 154 | . 2 ⊢ (¬ 𝜑 → ¬ 𝐴 = 𝐵) |
3 | 2 | neqned 2953 | 1 ⊢ (¬ 𝜑 → 𝐴 ≠ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ≠ wne 2946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-ne 2947 |
This theorem is referenced by: r19.2zb 4519 pwne 5371 alephord 10144 ackbij1lem18 10305 fin23lem26 10394 fin1a2lem6 10474 alephom 10654 gchxpidm 10738 egt2lt3 16254 nn0onn 16428 prmodvdslcmf 17094 symgfix2 19458 alexsubALTlem2 24077 alexsubALTlem4 24079 ptcmplem2 24082 nmoid 24784 cxplogb 26847 axlowdimlem17 28991 frgrncvvdeq 30341 hashxpe 32814 hasheuni 34049 limsucncmpi 36411 matunitlindflem1 37576 poimirlem32 37612 ovoliunnfl 37622 voliunnfl 37624 volsupnfl 37625 dvasin 37664 lsat0cv 38989 unitscyglem4 42155 metakunt24 42185 pellexlem5 42789 uzfissfz 45241 xralrple2 45269 infxr 45282 icccncfext 45808 ioodvbdlimc1lem1 45852 volioc 45893 fourierdlem32 46060 fourierdlem49 46076 fourierdlem73 46100 fourierswlem 46151 fouriersw 46152 sge0pr 46315 voliunsge0lem 46393 carageniuncl 46444 isomenndlem 46451 hoimbl 46552 |
Copyright terms: Public domain | W3C validator |