![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon3bi | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 1-Jun-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
Ref | Expression |
---|---|
necon3bi.1 | ⊢ (𝐴 = 𝐵 → 𝜑) |
Ref | Expression |
---|---|
necon3bi | ⊢ (¬ 𝜑 → 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon3bi.1 | . . 3 ⊢ (𝐴 = 𝐵 → 𝜑) | |
2 | 1 | con3i 154 | . 2 ⊢ (¬ 𝜑 → ¬ 𝐴 = 𝐵) |
3 | 2 | neqned 2946 | 1 ⊢ (¬ 𝜑 → 𝐴 ≠ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2939 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2940 |
This theorem is referenced by: r19.2zb 4495 pwne 5350 onnevOLD 6492 alephord 10073 ackbij1lem18 10235 fin23lem26 10323 fin1a2lem6 10403 alephom 10583 gchxpidm 10667 egt2lt3 16154 nn0onn 16328 prmodvdslcmf 16985 symgfix2 19326 alexsubALTlem2 23773 alexsubALTlem4 23775 ptcmplem2 23778 nmoid 24480 cxplogb 26528 axlowdimlem17 28484 frgrncvvdeq 29830 hashxpe 32287 hasheuni 33382 limsucncmpi 35634 matunitlindflem1 36788 poimirlem32 36824 ovoliunnfl 36834 voliunnfl 36836 volsupnfl 36837 dvasin 36876 lsat0cv 38207 metakunt24 41315 pellexlem5 41874 uzfissfz 44335 xralrple2 44363 infxr 44376 icccncfext 44902 ioodvbdlimc1lem1 44946 volioc 44987 fourierdlem32 45154 fourierdlem49 45170 fourierdlem73 45194 fourierswlem 45245 fouriersw 45246 sge0pr 45409 voliunsge0lem 45487 carageniuncl 45538 isomenndlem 45545 hoimbl 45646 |
Copyright terms: Public domain | W3C validator |