MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon3bi Structured version   Visualization version   GIF version

Theorem necon3bi 2951
Description: Contrapositive inference for inequality. (Contributed by NM, 1-Jun-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 22-Nov-2019.)
Hypothesis
Ref Expression
necon3bi.1 (𝐴 = 𝐵𝜑)
Assertion
Ref Expression
necon3bi 𝜑𝐴𝐵)

Proof of Theorem necon3bi
StepHypRef Expression
1 necon3bi.1 . . 3 (𝐴 = 𝐵𝜑)
21con3i 154 . 2 𝜑 → ¬ 𝐴 = 𝐵)
32neqned 2932 1 𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wne 2925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-ne 2926
This theorem is referenced by:  r19.2zb  4459  pwne  5308  alephord  10028  ackbij1lem18  10189  fin23lem26  10278  fin1a2lem6  10358  alephom  10538  gchxpidm  10622  egt2lt3  16174  nn0onn  16350  prmodvdslcmf  17018  symgfix2  19346  alexsubALTlem2  23935  alexsubALTlem4  23937  ptcmplem2  23940  nmoid  24630  cxplogb  26696  axlowdimlem17  28885  frgrncvvdeq  30238  hashxpe  32732  hasheuni  34075  limsucncmpi  36433  matunitlindflem1  37610  poimirlem32  37646  ovoliunnfl  37656  voliunnfl  37658  volsupnfl  37659  dvasin  37698  lsat0cv  39026  unitscyglem4  42186  readvrec2  42349  readvrec  42350  pellexlem5  42821  uzfissfz  45322  xralrple2  45350  infxr  45363  icccncfext  45885  ioodvbdlimc1lem1  45929  volioc  45970  fourierdlem32  46137  fourierdlem49  46153  fourierdlem73  46177  fourierswlem  46228  fouriersw  46229  sge0pr  46392  voliunsge0lem  46470  carageniuncl  46521  isomenndlem  46528  hoimbl  46629
  Copyright terms: Public domain W3C validator