MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon3bi Structured version   Visualization version   GIF version

Theorem necon3bi 2954
Description: Contrapositive inference for inequality. (Contributed by NM, 1-Jun-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 22-Nov-2019.)
Hypothesis
Ref Expression
necon3bi.1 (𝐴 = 𝐵𝜑)
Assertion
Ref Expression
necon3bi 𝜑𝐴𝐵)

Proof of Theorem necon3bi
StepHypRef Expression
1 necon3bi.1 . . 3 (𝐴 = 𝐵𝜑)
21con3i 154 . 2 𝜑 → ¬ 𝐴 = 𝐵)
32neqned 2935 1 𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wne 2928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-ne 2929
This theorem is referenced by:  r19.2zb  4446  pwne  5291  alephord  9963  ackbij1lem18  10124  fin23lem26  10213  fin1a2lem6  10293  alephom  10473  gchxpidm  10557  egt2lt3  16112  nn0onn  16288  prmodvdslcmf  16956  chnccat  18529  symgfix2  19326  alexsubALTlem2  23961  alexsubALTlem4  23963  ptcmplem2  23966  nmoid  24655  cxplogb  26721  axlowdimlem17  28934  frgrncvvdeq  30284  hashxpe  32784  hasheuni  34093  fineqvnttrclse  35132  limsucncmpi  36478  matunitlindflem1  37655  poimirlem32  37691  ovoliunnfl  37701  voliunnfl  37703  volsupnfl  37704  dvasin  37743  lsat0cv  39071  unitscyglem4  42230  readvrec2  42393  readvrec  42394  pellexlem5  42865  uzfissfz  45364  xralrple2  45392  infxr  45404  icccncfext  45924  ioodvbdlimc1lem1  45968  volioc  46009  fourierdlem32  46176  fourierdlem49  46192  fourierdlem73  46216  fourierswlem  46267  fouriersw  46268  sge0pr  46431  voliunsge0lem  46509  carageniuncl  46560  isomenndlem  46567  hoimbl  46668
  Copyright terms: Public domain W3C validator