![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon3bi | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 1-Jun-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
Ref | Expression |
---|---|
necon3bi.1 | ⊢ (𝐴 = 𝐵 → 𝜑) |
Ref | Expression |
---|---|
necon3bi | ⊢ (¬ 𝜑 → 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon3bi.1 | . . 3 ⊢ (𝐴 = 𝐵 → 𝜑) | |
2 | 1 | con3i 154 | . 2 ⊢ (¬ 𝜑 → ¬ 𝐴 = 𝐵) |
3 | 2 | neqned 2947 | 1 ⊢ (¬ 𝜑 → 𝐴 ≠ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ≠ wne 2940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2941 |
This theorem is referenced by: r19.2zb 4495 pwne 5350 onnevOLD 6492 alephord 10069 ackbij1lem18 10231 fin23lem26 10319 fin1a2lem6 10399 alephom 10579 gchxpidm 10663 egt2lt3 16148 nn0onn 16322 prmodvdslcmf 16979 symgfix2 19283 alexsubALTlem2 23551 alexsubALTlem4 23553 ptcmplem2 23556 nmoid 24258 cxplogb 26288 axlowdimlem17 28213 frgrncvvdeq 29559 hashxpe 32014 hasheuni 33078 limsucncmpi 35325 matunitlindflem1 36479 poimirlem32 36515 ovoliunnfl 36525 voliunnfl 36527 volsupnfl 36528 dvasin 36567 lsat0cv 37898 metakunt24 41003 pellexlem5 41561 uzfissfz 44026 xralrple2 44054 infxr 44067 icccncfext 44593 ioodvbdlimc1lem1 44637 volioc 44678 fourierdlem32 44845 fourierdlem49 44861 fourierdlem73 44885 fourierswlem 44936 fouriersw 44937 sge0pr 45100 voliunsge0lem 45178 carageniuncl 45229 isomenndlem 45236 hoimbl 45337 |
Copyright terms: Public domain | W3C validator |