| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon3bi | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 1-Jun-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon3bi.1 | ⊢ (𝐴 = 𝐵 → 𝜑) |
| Ref | Expression |
|---|---|
| necon3bi | ⊢ (¬ 𝜑 → 𝐴 ≠ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon3bi.1 | . . 3 ⊢ (𝐴 = 𝐵 → 𝜑) | |
| 2 | 1 | con3i 154 | . 2 ⊢ (¬ 𝜑 → ¬ 𝐴 = 𝐵) |
| 3 | 2 | neqned 2935 | 1 ⊢ (¬ 𝜑 → 𝐴 ≠ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ≠ wne 2928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2929 |
| This theorem is referenced by: r19.2zb 4446 pwne 5291 alephord 9963 ackbij1lem18 10124 fin23lem26 10213 fin1a2lem6 10293 alephom 10473 gchxpidm 10557 egt2lt3 16112 nn0onn 16288 prmodvdslcmf 16956 chnccat 18529 symgfix2 19326 alexsubALTlem2 23961 alexsubALTlem4 23963 ptcmplem2 23966 nmoid 24655 cxplogb 26721 axlowdimlem17 28934 frgrncvvdeq 30284 hashxpe 32784 hasheuni 34093 fineqvnttrclse 35132 limsucncmpi 36478 matunitlindflem1 37655 poimirlem32 37691 ovoliunnfl 37701 voliunnfl 37703 volsupnfl 37704 dvasin 37743 lsat0cv 39071 unitscyglem4 42230 readvrec2 42393 readvrec 42394 pellexlem5 42865 uzfissfz 45364 xralrple2 45392 infxr 45404 icccncfext 45924 ioodvbdlimc1lem1 45968 volioc 46009 fourierdlem32 46176 fourierdlem49 46192 fourierdlem73 46216 fourierswlem 46267 fouriersw 46268 sge0pr 46431 voliunsge0lem 46509 carageniuncl 46560 isomenndlem 46567 hoimbl 46668 |
| Copyright terms: Public domain | W3C validator |