| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon3bi | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 1-Jun-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon3bi.1 | ⊢ (𝐴 = 𝐵 → 𝜑) |
| Ref | Expression |
|---|---|
| necon3bi | ⊢ (¬ 𝜑 → 𝐴 ≠ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon3bi.1 | . . 3 ⊢ (𝐴 = 𝐵 → 𝜑) | |
| 2 | 1 | con3i 154 | . 2 ⊢ (¬ 𝜑 → ¬ 𝐴 = 𝐵) |
| 3 | 2 | neqned 2940 | 1 ⊢ (¬ 𝜑 → 𝐴 ≠ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2933 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2934 |
| This theorem is referenced by: r19.2zb 4476 pwne 5328 alephord 10094 ackbij1lem18 10255 fin23lem26 10344 fin1a2lem6 10424 alephom 10604 gchxpidm 10688 egt2lt3 16229 nn0onn 16404 prmodvdslcmf 17072 symgfix2 19402 alexsubALTlem2 23991 alexsubALTlem4 23993 ptcmplem2 23996 nmoid 24686 cxplogb 26753 axlowdimlem17 28942 frgrncvvdeq 30295 hashxpe 32791 hasheuni 34121 limsucncmpi 36468 matunitlindflem1 37645 poimirlem32 37681 ovoliunnfl 37691 voliunnfl 37693 volsupnfl 37694 dvasin 37733 lsat0cv 39056 unitscyglem4 42216 readvrec2 42371 readvrec 42372 pellexlem5 42823 uzfissfz 45320 xralrple2 45348 infxr 45361 icccncfext 45883 ioodvbdlimc1lem1 45927 volioc 45968 fourierdlem32 46135 fourierdlem49 46151 fourierdlem73 46175 fourierswlem 46226 fouriersw 46227 sge0pr 46390 voliunsge0lem 46468 carageniuncl 46519 isomenndlem 46526 hoimbl 46627 |
| Copyright terms: Public domain | W3C validator |