Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nic-stdmp | Structured version Visualization version GIF version |
Description: Derive the standard modus ponens from nic-mp 1679. (Contributed by Jeff Hoffman, 18-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nic-smin | ⊢ 𝜑 |
nic-smaj | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
nic-stdmp | ⊢ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nic-smin | . 2 ⊢ 𝜑 | |
2 | nic-smaj | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | nic-dfim 1677 | . . . 4 ⊢ (((𝜑 ⊼ (𝜓 ⊼ 𝜓)) ⊼ (𝜑 → 𝜓)) ⊼ (((𝜑 ⊼ (𝜓 ⊼ 𝜓)) ⊼ (𝜑 ⊼ (𝜓 ⊼ 𝜓))) ⊼ ((𝜑 → 𝜓) ⊼ (𝜑 → 𝜓)))) | |
4 | 3 | nic-bi2 1697 | . . 3 ⊢ ((𝜑 → 𝜓) ⊼ ((𝜑 ⊼ (𝜓 ⊼ 𝜓)) ⊼ (𝜑 ⊼ (𝜓 ⊼ 𝜓)))) |
5 | 2, 4 | nic-mp 1679 | . 2 ⊢ (𝜑 ⊼ (𝜓 ⊼ 𝜓)) |
6 | 1, 5 | nic-mp 1679 | 1 ⊢ 𝜓 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊼ wnan 1487 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-nan 1488 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |