MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nic-mp Structured version   Visualization version   GIF version

Theorem nic-mp 1666
Description: Derive Nicod's rule of modus ponens using 'nand', from the standard one. Although the major and minor premise together also imply 𝜒, this form is necessary for useful derivations from nic-ax 1668. In a pure (standalone) treatment of Nicod's axiom, this theorem would be changed to an axiom ($a statement). (Contributed by Jeff Hoffman, 19-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
nic-jmin 𝜑
nic-jmaj (𝜑 ⊼ (𝜒𝜓))
Assertion
Ref Expression
nic-mp 𝜓

Proof of Theorem nic-mp
StepHypRef Expression
1 nic-jmin . 2 𝜑
2 nic-jmaj . . . 4 (𝜑 ⊼ (𝜒𝜓))
3 nannan 1491 . . . 4 ((𝜑 ⊼ (𝜒𝜓)) ↔ (𝜑 → (𝜒𝜓)))
42, 3mpbi 229 . . 3 (𝜑 → (𝜒𝜓))
54simprd 494 . 2 (𝜑𝜓)
61, 5ax-mp 5 1 𝜓
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wnan 1485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 395  df-nan 1486
This theorem is referenced by:  nic-imp  1670  nic-idlem2  1672  nic-id  1673  nic-swap  1674  nic-isw1  1675  nic-isw2  1676  nic-iimp1  1677  nic-idel  1679  nic-ich  1680  nic-stdmp  1685  nic-luk1  1686  nic-luk2  1687  nic-luk3  1688  lukshefth1  1690  lukshefth2  1691  renicax  1692
  Copyright terms: Public domain W3C validator