MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nic-mp Structured version   Visualization version   GIF version

Theorem nic-mp 1679
Description: Derive Nicod's rule of modus ponens using 'nand', from the standard one. Although the major and minor premise together also imply 𝜒, this form is necessary for useful derivations from nic-ax 1681. In a pure (standalone) treatment of Nicod's axiom, this theorem would be changed to an axiom ($a statement). (Contributed by Jeff Hoffman, 19-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
nic-jmin 𝜑
nic-jmaj (𝜑 ⊼ (𝜒𝜓))
Assertion
Ref Expression
nic-mp 𝜓

Proof of Theorem nic-mp
StepHypRef Expression
1 nic-jmin . 2 𝜑
2 nic-jmaj . . . 4 (𝜑 ⊼ (𝜒𝜓))
3 nannan 1493 . . . 4 ((𝜑 ⊼ (𝜒𝜓)) ↔ (𝜑 → (𝜒𝜓)))
42, 3mpbi 233 . . 3 (𝜑 → (𝜒𝜓))
54simprd 499 . 2 (𝜑𝜓)
61, 5ax-mp 5 1 𝜓
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wnan 1487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400  df-nan 1488
This theorem is referenced by:  nic-imp  1683  nic-idlem2  1685  nic-id  1686  nic-swap  1687  nic-isw1  1688  nic-isw2  1689  nic-iimp1  1690  nic-idel  1692  nic-ich  1693  nic-stdmp  1698  nic-luk1  1699  nic-luk2  1700  nic-luk3  1701  lukshefth1  1703  lukshefth2  1704  renicax  1705
  Copyright terms: Public domain W3C validator