![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nic-mp | Structured version Visualization version GIF version |
Description: Derive Nicod's rule of modus ponens using 'nand', from the standard one. Although the major and minor premise together also imply 𝜒, this form is necessary for useful derivations from nic-ax 1675. In a pure (standalone) treatment of Nicod's axiom, this theorem would be changed to an axiom ($a statement). (Contributed by Jeff Hoffman, 19-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nic-jmin | ⊢ 𝜑 |
nic-jmaj | ⊢ (𝜑 ⊼ (𝜒 ⊼ 𝜓)) |
Ref | Expression |
---|---|
nic-mp | ⊢ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nic-jmin | . 2 ⊢ 𝜑 | |
2 | nic-jmaj | . . . 4 ⊢ (𝜑 ⊼ (𝜒 ⊼ 𝜓)) | |
3 | nannan 1495 | . . . 4 ⊢ ((𝜑 ⊼ (𝜒 ⊼ 𝜓)) ↔ (𝜑 → (𝜒 ∧ 𝜓))) | |
4 | 2, 3 | mpbi 229 | . . 3 ⊢ (𝜑 → (𝜒 ∧ 𝜓)) |
5 | 4 | simprd 496 | . 2 ⊢ (𝜑 → 𝜓) |
6 | 1, 5 | ax-mp 5 | 1 ⊢ 𝜓 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ⊼ wnan 1489 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-nan 1490 |
This theorem is referenced by: nic-imp 1677 nic-idlem2 1679 nic-id 1680 nic-swap 1681 nic-isw1 1682 nic-isw2 1683 nic-iimp1 1684 nic-idel 1686 nic-ich 1687 nic-stdmp 1692 nic-luk1 1693 nic-luk2 1694 nic-luk3 1695 lukshefth1 1697 lukshefth2 1698 renicax 1699 |
Copyright terms: Public domain | W3C validator |