MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  norasslem2 Structured version   Visualization version   GIF version

Theorem norasslem2 1533
Description: This lemma specializes biimt 360 suitably for the proof of norass 1535. (Contributed by Wolf Lammen, 18-Dec-2023.)
Assertion
Ref Expression
norasslem2 (𝜑 → (𝜓 ↔ ((𝜑𝜒) → 𝜓)))

Proof of Theorem norasslem2
StepHypRef Expression
1 orc 863 . 2 (𝜑 → (𝜑𝜒))
2 biimt 360 . 2 ((𝜑𝜒) → (𝜓 ↔ ((𝜑𝜒) → 𝜓)))
31, 2syl 17 1 (𝜑 → (𝜓 ↔ ((𝜑𝜒) → 𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wo 843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 844
This theorem is referenced by:  norass  1535
  Copyright terms: Public domain W3C validator