Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > norasslem3 | Structured version Visualization version GIF version |
Description: This lemma specializes biorf 933 suitably for the proof of norass 1535. (Contributed by Wolf Lammen, 18-Dec-2023.) |
Ref | Expression |
---|---|
norasslem3 | ⊢ (¬ 𝜑 → ((𝜓 → 𝜒) ↔ ((𝜑 ∨ 𝜓) → 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biorf 933 | . 2 ⊢ (¬ 𝜑 → (𝜓 ↔ (𝜑 ∨ 𝜓))) | |
2 | 1 | imbi1d 341 | 1 ⊢ (¬ 𝜑 → ((𝜓 → 𝜒) ↔ ((𝜑 ∨ 𝜓) → 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∨ wo 843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 844 |
This theorem is referenced by: norass 1535 |
Copyright terms: Public domain | W3C validator |