MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  norasslem3 Structured version   Visualization version   GIF version

Theorem norasslem3 1534
Description: This lemma specializes biorf 933 suitably for the proof of norass 1535. (Contributed by Wolf Lammen, 18-Dec-2023.)
Assertion
Ref Expression
norasslem3 𝜑 → ((𝜓𝜒) ↔ ((𝜑𝜓) → 𝜒)))

Proof of Theorem norasslem3
StepHypRef Expression
1 biorf 933 . 2 𝜑 → (𝜓 ↔ (𝜑𝜓)))
21imbi1d 341 1 𝜑 → ((𝜓𝜒) ↔ ((𝜑𝜓) → 𝜒)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wo 843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 844
This theorem is referenced by:  norass  1535
  Copyright terms: Public domain W3C validator