Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > norasslem1 | Structured version Visualization version GIF version |
Description: This lemma shows the equivalence of two expressions, used in norass 1535. (Contributed by Wolf Lammen, 18-Dec-2023.) |
Ref | Expression |
---|---|
norasslem1 | ⊢ (((𝜑 ∨ 𝜓) → 𝜒) ↔ ((𝜑 ⊽ 𝜓) ∨ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imor 849 | . 2 ⊢ (((𝜑 ∨ 𝜓) → 𝜒) ↔ (¬ (𝜑 ∨ 𝜓) ∨ 𝜒)) | |
2 | df-nor 1523 | . . 3 ⊢ ((𝜑 ⊽ 𝜓) ↔ ¬ (𝜑 ∨ 𝜓)) | |
3 | 2 | orbi1i 910 | . 2 ⊢ (((𝜑 ⊽ 𝜓) ∨ 𝜒) ↔ (¬ (𝜑 ∨ 𝜓) ∨ 𝜒)) |
4 | 1, 3 | bitr4i 277 | 1 ⊢ (((𝜑 ∨ 𝜓) → 𝜒) ↔ ((𝜑 ⊽ 𝜓) ∨ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∨ wo 843 ⊽ wnor 1522 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 844 df-nor 1523 |
This theorem is referenced by: norass 1535 |
Copyright terms: Public domain | W3C validator |