MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  norasslem1 Structured version   Visualization version   GIF version

Theorem norasslem1 1532
Description: This lemma shows the equivalence of two expressions, used in norass 1535. (Contributed by Wolf Lammen, 18-Dec-2023.)
Assertion
Ref Expression
norasslem1 (((𝜑𝜓) → 𝜒) ↔ ((𝜑 𝜓) ∨ 𝜒))

Proof of Theorem norasslem1
StepHypRef Expression
1 imor 849 . 2 (((𝜑𝜓) → 𝜒) ↔ (¬ (𝜑𝜓) ∨ 𝜒))
2 df-nor 1523 . . 3 ((𝜑 𝜓) ↔ ¬ (𝜑𝜓))
32orbi1i 910 . 2 (((𝜑 𝜓) ∨ 𝜒) ↔ (¬ (𝜑𝜓) ∨ 𝜒))
41, 3bitr4i 277 1 (((𝜑𝜓) → 𝜒) ↔ ((𝜑 𝜓) ∨ 𝜒))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wo 843   wnor 1522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 844  df-nor 1523
This theorem is referenced by:  norass  1535
  Copyright terms: Public domain W3C validator