|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > norasslem1 | Structured version Visualization version GIF version | ||
| Description: This lemma shows the equivalence of two expressions, used in norass 1537. (Contributed by Wolf Lammen, 18-Dec-2023.) | 
| Ref | Expression | 
|---|---|
| norasslem1 | ⊢ (((𝜑 ∨ 𝜓) → 𝜒) ↔ ((𝜑 ⊽ 𝜓) ∨ 𝜒)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | imor 854 | . 2 ⊢ (((𝜑 ∨ 𝜓) → 𝜒) ↔ (¬ (𝜑 ∨ 𝜓) ∨ 𝜒)) | |
| 2 | df-nor 1529 | . . 3 ⊢ ((𝜑 ⊽ 𝜓) ↔ ¬ (𝜑 ∨ 𝜓)) | |
| 3 | 2 | orbi1i 914 | . 2 ⊢ (((𝜑 ⊽ 𝜓) ∨ 𝜒) ↔ (¬ (𝜑 ∨ 𝜓) ∨ 𝜒)) | 
| 4 | 1, 3 | bitr4i 278 | 1 ⊢ (((𝜑 ∨ 𝜓) → 𝜒) ↔ ((𝜑 ⊽ 𝜓) ∨ 𝜒)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 848 ⊽ wnor 1528 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-or 849 df-nor 1529 | 
| This theorem is referenced by: norass 1537 | 
| Copyright terms: Public domain | W3C validator |