Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > biimt | Structured version Visualization version GIF version |
Description: A wff is equivalent to itself with true antecedent. (Contributed by NM, 28-Jan-1996.) |
Ref | Expression |
---|---|
biimt | ⊢ (𝜑 → (𝜓 ↔ (𝜑 → 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1 6 | . 2 ⊢ (𝜓 → (𝜑 → 𝜓)) | |
2 | pm2.27 42 | . 2 ⊢ (𝜑 → ((𝜑 → 𝜓) → 𝜓)) | |
3 | 1, 2 | impbid2 229 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜑 → 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 |
This theorem is referenced by: pm5.5 366 a1bi 367 mtt 369 abai 826 dedlem0a 1040 ifptru 1072 norasslem2 1533 ceqsralt 3445 clel2g 3571 clel4g 3576 reu8 3648 csbiebt 3835 r19.3rz 4391 ralidmOLD 4409 notzfausOLD 5232 reusv2lem5 5272 fncnv 6409 ovmpodxf 7296 brecop 8401 kmlem8 9610 kmlem13 9615 fin71num 9850 ttukeylem6 9967 ltxrlt 10742 rlimresb 14963 acsfn 16981 tgss2 21680 ist1-3 22042 mbflimsup 24359 mdegle0 24770 dchrelbas3 25914 tgcgr4 26417 wl-clabtv 35267 wl-clabt 35268 cdleme32fva 38006 ntrneik2 41161 ntrneix2 41162 ntrneikb 41163 ovmpordxf 45100 |
Copyright terms: Public domain | W3C validator |