| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biimt | Structured version Visualization version GIF version | ||
| Description: A wff is equivalent to itself with true antecedent. (Contributed by NM, 28-Jan-1996.) |
| Ref | Expression |
|---|---|
| biimt | ⊢ (𝜑 → (𝜓 ↔ (𝜑 → 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1 6 | . 2 ⊢ (𝜓 → (𝜑 → 𝜓)) | |
| 2 | pm2.27 42 | . 2 ⊢ (𝜑 → ((𝜑 → 𝜓) → 𝜓)) | |
| 3 | 1, 2 | impbid2 226 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜑 → 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: pm5.5 361 a1bi 362 mtt 364 abai 826 dedlem0a 1043 ifptru 1074 norasslem2 1535 ceqsralt 3485 clel2g 3628 clel4g 3632 reu8 3707 csbiebt 3894 r19.3rz 4463 reusv2lem5 5360 fncnv 6592 ovmpodxf 7542 brecop 8786 kmlem8 10118 kmlem13 10123 fin71num 10357 ttukeylem6 10474 ltxrlt 11251 rlimresb 15538 acsfn 17627 tgss2 22881 ist1-3 23243 mbflimsup 25574 mdegle0 25989 dchrelbas3 27156 tgcgr4 28465 wl-clabtv 37592 wl-clabt 37593 cdleme32fva 40438 ntrneik2 44088 ntrneix2 44089 ntrneikb 44090 r19.3rzf 45159 ovmpordxf 48331 fulltermc 49504 |
| Copyright terms: Public domain | W3C validator |