MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  biimt Structured version   Visualization version   GIF version

Theorem biimt 360
Description: A wff is equivalent to itself with true antecedent. (Contributed by NM, 28-Jan-1996.)
Assertion
Ref Expression
biimt (𝜑 → (𝜓 ↔ (𝜑𝜓)))

Proof of Theorem biimt
StepHypRef Expression
1 ax-1 6 . 2 (𝜓 → (𝜑𝜓))
2 pm2.27 42 . 2 (𝜑 → ((𝜑𝜓) → 𝜓))
31, 2impbid2 225 1 (𝜑 → (𝜓 ↔ (𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  pm5.5  361  a1bi  362  mtt  364  abai  823  dedlem0a  1040  ifptru  1072  norasslem2  1533  ceqsralt  3453  clel2g  3581  clel4g  3586  reu8  3663  csbiebt  3858  r19.3rz  4424  ralidmOLD  4443  reusv2lem5  5320  fncnv  6491  ovmpodxf  7401  brecop  8557  kmlem8  9844  kmlem13  9849  fin71num  10084  ttukeylem6  10201  ltxrlt  10976  rlimresb  15202  acsfn  17285  tgss2  22045  ist1-3  22408  mbflimsup  24735  mdegle0  25147  dchrelbas3  26291  tgcgr4  26796  wl-clabtv  35675  wl-clabt  35676  cdleme32fva  38378  ntrneik2  41591  ntrneix2  41592  ntrneikb  41593  ovmpordxf  45562
  Copyright terms: Public domain W3C validator