| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biimt | Structured version Visualization version GIF version | ||
| Description: A wff is equivalent to itself with true antecedent. (Contributed by NM, 28-Jan-1996.) |
| Ref | Expression |
|---|---|
| biimt | ⊢ (𝜑 → (𝜓 ↔ (𝜑 → 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1 6 | . 2 ⊢ (𝜓 → (𝜑 → 𝜓)) | |
| 2 | pm2.27 42 | . 2 ⊢ (𝜑 → ((𝜑 → 𝜓) → 𝜓)) | |
| 3 | 1, 2 | impbid2 226 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜑 → 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: pm5.5 361 a1bi 362 mtt 364 abai 826 dedlem0a 1043 ifptru 1074 norasslem2 1535 ceqsralt 3495 clel2g 3638 clel4g 3642 reu8 3716 csbiebt 3903 r19.3rz 4472 reusv2lem5 5372 fncnv 6609 ovmpodxf 7557 brecop 8824 kmlem8 10172 kmlem13 10177 fin71num 10411 ttukeylem6 10528 ltxrlt 11305 rlimresb 15581 acsfn 17671 tgss2 22925 ist1-3 23287 mbflimsup 25619 mdegle0 26034 dchrelbas3 27201 tgcgr4 28510 wl-clabtv 37615 wl-clabt 37616 cdleme32fva 40456 ntrneik2 44116 ntrneix2 44117 ntrneikb 44118 r19.3rzf 45182 ovmpordxf 48314 fulltermc 49396 |
| Copyright terms: Public domain | W3C validator |