| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biimt | Structured version Visualization version GIF version | ||
| Description: A wff is equivalent to itself with true antecedent. (Contributed by NM, 28-Jan-1996.) |
| Ref | Expression |
|---|---|
| biimt | ⊢ (𝜑 → (𝜓 ↔ (𝜑 → 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1 6 | . 2 ⊢ (𝜓 → (𝜑 → 𝜓)) | |
| 2 | pm2.27 42 | . 2 ⊢ (𝜑 → ((𝜑 → 𝜓) → 𝜓)) | |
| 3 | 1, 2 | impbid2 226 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜑 → 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: pm5.5 361 a1bi 362 mtt 364 abai 826 dedlem0a 1043 ifptru 1074 norasslem2 1536 ceqsralt 3471 clel2g 3614 clel4g 3618 reu8 3692 csbiebt 3879 r19.3rz 4447 reusv2lem5 5340 fncnv 6554 ovmpodxf 7496 brecop 8734 kmlem8 10046 kmlem13 10051 fin71num 10285 ttukeylem6 10402 ltxrlt 11180 rlimresb 15469 acsfn 17562 tgss2 22900 ist1-3 23262 mbflimsup 25592 mdegle0 26007 dchrelbas3 27174 tgcgr4 28507 wl-clabtv 37630 wl-clabt 37631 cdleme32fva 40475 ntrneik2 44124 ntrneix2 44125 ntrneikb 44126 r19.3rzf 45194 ovmpordxf 48369 fulltermc 49542 |
| Copyright terms: Public domain | W3C validator |