| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biimt | Structured version Visualization version GIF version | ||
| Description: A wff is equivalent to itself with true antecedent. (Contributed by NM, 28-Jan-1996.) |
| Ref | Expression |
|---|---|
| biimt | ⊢ (𝜑 → (𝜓 ↔ (𝜑 → 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1 6 | . 2 ⊢ (𝜓 → (𝜑 → 𝜓)) | |
| 2 | pm2.27 42 | . 2 ⊢ (𝜑 → ((𝜑 → 𝜓) → 𝜓)) | |
| 3 | 1, 2 | impbid2 226 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜑 → 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: pm5.5 361 a1bi 362 mtt 364 abai 826 dedlem0a 1043 ifptru 1074 norasslem2 1535 ceqsralt 3482 clel2g 3625 clel4g 3629 reu8 3704 csbiebt 3891 r19.3rz 4460 reusv2lem5 5357 fncnv 6589 ovmpodxf 7539 brecop 8783 kmlem8 10111 kmlem13 10116 fin71num 10350 ttukeylem6 10467 ltxrlt 11244 rlimresb 15531 acsfn 17620 tgss2 22874 ist1-3 23236 mbflimsup 25567 mdegle0 25982 dchrelbas3 27149 tgcgr4 28458 wl-clabtv 37585 wl-clabt 37586 cdleme32fva 40431 ntrneik2 44081 ntrneix2 44082 ntrneikb 44083 r19.3rzf 45152 ovmpordxf 48327 fulltermc 49500 |
| Copyright terms: Public domain | W3C validator |