MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  biimt Structured version   Visualization version   GIF version

Theorem biimt 360
Description: A wff is equivalent to itself with true antecedent. (Contributed by NM, 28-Jan-1996.)
Assertion
Ref Expression
biimt (𝜑 → (𝜓 ↔ (𝜑𝜓)))

Proof of Theorem biimt
StepHypRef Expression
1 ax-1 6 . 2 (𝜓 → (𝜑𝜓))
2 pm2.27 42 . 2 (𝜑 → ((𝜑𝜓) → 𝜓))
31, 2impbid2 226 1 (𝜑 → (𝜓 ↔ (𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  pm5.5  361  a1bi  362  mtt  364  abai  826  dedlem0a  1043  ifptru  1074  norasslem2  1535  ceqsralt  3482  clel2g  3625  clel4g  3629  reu8  3704  csbiebt  3891  r19.3rz  4460  reusv2lem5  5357  fncnv  6589  ovmpodxf  7539  brecop  8783  kmlem8  10111  kmlem13  10116  fin71num  10350  ttukeylem6  10467  ltxrlt  11244  rlimresb  15531  acsfn  17620  tgss2  22874  ist1-3  23236  mbflimsup  25567  mdegle0  25982  dchrelbas3  27149  tgcgr4  28458  wl-clabtv  37585  wl-clabt  37586  cdleme32fva  40431  ntrneik2  44081  ntrneix2  44082  ntrneikb  44083  r19.3rzf  45152  ovmpordxf  48327  fulltermc  49500
  Copyright terms: Public domain W3C validator