![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > biimt | Structured version Visualization version GIF version |
Description: A wff is equivalent to itself with true antecedent. (Contributed by NM, 28-Jan-1996.) |
Ref | Expression |
---|---|
biimt | ⊢ (𝜑 → (𝜓 ↔ (𝜑 → 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1 6 | . 2 ⊢ (𝜓 → (𝜑 → 𝜓)) | |
2 | pm2.27 42 | . 2 ⊢ (𝜑 → ((𝜑 → 𝜓) → 𝜓)) | |
3 | 1, 2 | impbid2 226 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜑 → 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: pm5.5 361 a1bi 362 mtt 364 abai 827 dedlem0a 1043 ifptru 1074 norasslem2 1531 ceqsralt 3513 clel2g 3658 clel4g 3662 reu8 3741 csbiebt 3937 r19.3rz 4502 reusv2lem5 5407 fncnv 6640 ovmpodxf 7582 brecop 8848 kmlem8 10195 kmlem13 10200 fin71num 10434 ttukeylem6 10551 ltxrlt 11328 rlimresb 15597 acsfn 17703 tgss2 23009 ist1-3 23372 mbflimsup 25714 mdegle0 26130 dchrelbas3 27296 tgcgr4 28553 wl-clabtv 37577 wl-clabt 37578 cdleme32fva 40419 ntrneik2 44081 ntrneix2 44082 ntrneikb 44083 r19.3rzf 45100 ovmpordxf 48183 |
Copyright terms: Public domain | W3C validator |