![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > biimt | Structured version Visualization version GIF version |
Description: A wff is equivalent to itself with true antecedent. (Contributed by NM, 28-Jan-1996.) |
Ref | Expression |
---|---|
biimt | ⊢ (𝜑 → (𝜓 ↔ (𝜑 → 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1 6 | . 2 ⊢ (𝜓 → (𝜑 → 𝜓)) | |
2 | pm2.27 42 | . 2 ⊢ (𝜑 → ((𝜑 → 𝜓) → 𝜓)) | |
3 | 1, 2 | impbid2 226 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜑 → 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: pm5.5 361 a1bi 362 mtt 364 abai 826 dedlem0a 1044 ifptru 1075 norasslem2 1532 ceqsralt 3524 clel2g 3672 clel4g 3676 reu8 3755 csbiebt 3951 r19.3rz 4520 reusv2lem5 5420 fncnv 6651 ovmpodxf 7600 brecop 8868 kmlem8 10227 kmlem13 10232 fin71num 10466 ttukeylem6 10583 ltxrlt 11360 rlimresb 15611 acsfn 17717 tgss2 23015 ist1-3 23378 mbflimsup 25720 mdegle0 26136 dchrelbas3 27300 tgcgr4 28557 wl-clabtv 37551 wl-clabt 37552 cdleme32fva 40394 ntrneik2 44054 ntrneix2 44055 ntrneikb 44056 r19.3rzf 45063 ovmpordxf 48063 |
Copyright terms: Public domain | W3C validator |