MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  biimt Structured version   Visualization version   GIF version

Theorem biimt 360
Description: A wff is equivalent to itself with true antecedent. (Contributed by NM, 28-Jan-1996.)
Assertion
Ref Expression
biimt (𝜑 → (𝜓 ↔ (𝜑𝜓)))

Proof of Theorem biimt
StepHypRef Expression
1 ax-1 6 . 2 (𝜓 → (𝜑𝜓))
2 pm2.27 42 . 2 (𝜑 → ((𝜑𝜓) → 𝜓))
31, 2impbid2 226 1 (𝜑 → (𝜓 ↔ (𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  pm5.5  361  a1bi  362  mtt  364  abai  826  dedlem0a  1043  ifptru  1074  norasslem2  1536  ceqsralt  3471  clel2g  3614  clel4g  3618  reu8  3692  csbiebt  3879  r19.3rz  4447  reusv2lem5  5340  fncnv  6554  ovmpodxf  7496  brecop  8734  kmlem8  10046  kmlem13  10051  fin71num  10285  ttukeylem6  10402  ltxrlt  11180  rlimresb  15469  acsfn  17562  tgss2  22900  ist1-3  23262  mbflimsup  25592  mdegle0  26007  dchrelbas3  27174  tgcgr4  28507  wl-clabtv  37630  wl-clabt  37631  cdleme32fva  40475  ntrneik2  44124  ntrneix2  44125  ntrneikb  44126  r19.3rzf  45194  ovmpordxf  48369  fulltermc  49542
  Copyright terms: Public domain W3C validator