MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  biimt Structured version   Visualization version   GIF version

Theorem biimt 360
Description: A wff is equivalent to itself with true antecedent. (Contributed by NM, 28-Jan-1996.)
Assertion
Ref Expression
biimt (𝜑 → (𝜓 ↔ (𝜑𝜓)))

Proof of Theorem biimt
StepHypRef Expression
1 ax-1 6 . 2 (𝜓 → (𝜑𝜓))
2 pm2.27 42 . 2 (𝜑 → ((𝜑𝜓) → 𝜓))
31, 2impbid2 225 1 (𝜑 → (𝜓 ↔ (𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  pm5.5  361  a1bi  362  mtt  364  abai  826  dedlem0a  1042  ifptru  1073  norasslem2  1529  ceqsralt  3502  clel2g  3643  clel4g  3648  reu8  3726  csbiebt  3919  r19.3rz  4492  ralidmOLD  4511  reusv2lem5  5396  fncnv  6620  ovmpodxf  7565  brecop  8820  kmlem8  10172  kmlem13  10177  fin71num  10412  ttukeylem6  10529  ltxrlt  11306  rlimresb  15533  acsfn  17630  tgss2  22877  ist1-3  23240  mbflimsup  25582  mdegle0  26000  dchrelbas3  27158  tgcgr4  28322  wl-clabtv  36999  wl-clabt  37000  cdleme32fva  39847  ntrneik2  43445  ntrneix2  43446  ntrneikb  43447  r19.3rzf  44452  ovmpordxf  47325
  Copyright terms: Public domain W3C validator