Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > biimt | Structured version Visualization version GIF version |
Description: A wff is equivalent to itself with true antecedent. (Contributed by NM, 28-Jan-1996.) |
Ref | Expression |
---|---|
biimt | ⊢ (𝜑 → (𝜓 ↔ (𝜑 → 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1 6 | . 2 ⊢ (𝜓 → (𝜑 → 𝜓)) | |
2 | pm2.27 42 | . 2 ⊢ (𝜑 → ((𝜑 → 𝜓) → 𝜓)) | |
3 | 1, 2 | impbid2 225 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜑 → 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: pm5.5 362 a1bi 363 mtt 365 abai 824 dedlem0a 1041 ifptru 1073 norasslem2 1533 ceqsralt 3464 clel2g 3589 clel4g 3594 reu8 3669 csbiebt 3863 r19.3rz 4428 ralidmOLD 4447 reusv2lem5 5326 fncnv 6514 ovmpodxf 7432 brecop 8608 kmlem8 9922 kmlem13 9927 fin71num 10162 ttukeylem6 10279 ltxrlt 11054 rlimresb 15283 acsfn 17377 tgss2 22146 ist1-3 22509 mbflimsup 24839 mdegle0 25251 dchrelbas3 26395 tgcgr4 26901 wl-clabtv 35757 wl-clabt 35758 cdleme32fva 38458 ntrneik2 41709 ntrneix2 41710 ntrneikb 41711 ovmpordxf 45685 |
Copyright terms: Public domain | W3C validator |