Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > biimt | Structured version Visualization version GIF version |
Description: A wff is equivalent to itself with true antecedent. (Contributed by NM, 28-Jan-1996.) |
Ref | Expression |
---|---|
biimt | ⊢ (𝜑 → (𝜓 ↔ (𝜑 → 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1 6 | . 2 ⊢ (𝜓 → (𝜑 → 𝜓)) | |
2 | pm2.27 42 | . 2 ⊢ (𝜑 → ((𝜑 → 𝜓) → 𝜓)) | |
3 | 1, 2 | impbid2 225 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜑 → 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: pm5.5 361 a1bi 362 mtt 364 abai 823 dedlem0a 1040 ifptru 1072 norasslem2 1533 ceqsralt 3453 clel2g 3581 clel4g 3586 reu8 3663 csbiebt 3858 r19.3rz 4424 ralidmOLD 4443 reusv2lem5 5320 fncnv 6491 ovmpodxf 7401 brecop 8557 kmlem8 9844 kmlem13 9849 fin71num 10084 ttukeylem6 10201 ltxrlt 10976 rlimresb 15202 acsfn 17285 tgss2 22045 ist1-3 22408 mbflimsup 24735 mdegle0 25147 dchrelbas3 26291 tgcgr4 26796 wl-clabtv 35675 wl-clabt 35676 cdleme32fva 38378 ntrneik2 41591 ntrneix2 41592 ntrneikb 41593 ovmpordxf 45562 |
Copyright terms: Public domain | W3C validator |