| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biimt | Structured version Visualization version GIF version | ||
| Description: A wff is equivalent to itself with true antecedent. (Contributed by NM, 28-Jan-1996.) |
| Ref | Expression |
|---|---|
| biimt | ⊢ (𝜑 → (𝜓 ↔ (𝜑 → 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1 6 | . 2 ⊢ (𝜓 → (𝜑 → 𝜓)) | |
| 2 | pm2.27 42 | . 2 ⊢ (𝜑 → ((𝜑 → 𝜓) → 𝜓)) | |
| 3 | 1, 2 | impbid2 226 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜑 → 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: pm5.5 361 a1bi 362 mtt 364 abai 826 dedlem0a 1043 ifptru 1074 norasslem2 1536 ceqsralt 3472 clel2g 3610 clel4g 3614 reu8 3688 csbiebt 3875 r19.3rz 4446 reusv2lem5 5342 fncnv 6559 ovmpodxf 7502 brecop 8740 kmlem8 10056 kmlem13 10061 fin71num 10295 ttukeylem6 10412 ltxrlt 11190 rlimresb 15474 acsfn 17567 tgss2 22903 ist1-3 23265 mbflimsup 25595 mdegle0 26010 dchrelbas3 27177 tgcgr4 28510 wl-clabtv 37651 wl-clabt 37652 cdleme32fva 40556 ntrneik2 44209 ntrneix2 44210 ntrneikb 44211 r19.3rzf 45279 ovmpordxf 48463 fulltermc 49636 |
| Copyright terms: Public domain | W3C validator |