Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imbi1d | Structured version Visualization version GIF version |
Description: Deduction adding a consequent to both sides of a logical equivalence. (Contributed by NM, 11-May-1993.) (Proof shortened by Wolf Lammen, 17-Sep-2013.) |
Ref | Expression |
---|---|
imbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
imbi1d | ⊢ (𝜑 → ((𝜓 → 𝜃) ↔ (𝜒 → 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbid.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | biimprd 248 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜓)) |
3 | 2 | imim1d 82 | . 2 ⊢ (𝜑 → ((𝜓 → 𝜃) → (𝜒 → 𝜃))) |
4 | 1 | biimpd 228 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
5 | 4 | imim1d 82 | . 2 ⊢ (𝜑 → ((𝜒 → 𝜃) → (𝜓 → 𝜃))) |
6 | 3, 5 | impbid 211 | 1 ⊢ (𝜑 → ((𝜓 → 𝜃) ↔ (𝜒 → 𝜃))) |
Copyright terms: Public domain | W3C validator |