| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biorf | Structured version Visualization version GIF version | ||
| Description: A wff is equivalent to its disjunction with falsehood. Theorem *4.74 of [WhiteheadRussell] p. 121. (Contributed by NM, 23-Mar-1995.) (Proof shortened by Wolf Lammen, 18-Nov-2012.) |
| Ref | Expression |
|---|---|
| biorf | ⊢ (¬ 𝜑 → (𝜓 ↔ (𝜑 ∨ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olc 868 | . 2 ⊢ (𝜓 → (𝜑 ∨ 𝜓)) | |
| 2 | orel1 888 | . 2 ⊢ (¬ 𝜑 → ((𝜑 ∨ 𝜓) → 𝜓)) | |
| 3 | 1, 2 | impbid2 226 | 1 ⊢ (¬ 𝜑 → (𝜓 ↔ (𝜑 ∨ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: biortn 937 biorfi 938 pm5.55 950 pm5.75 1030 3bior1fd 1477 3bior2fd 1479 norasslem3 1536 euor 2610 euorv 2611 euor2 2612 eueq3 3694 unineq 4263 ifor 4555 difprsnss 4775 eqsn 4805 pr1eqbg 4833 disjprg 5115 disjxun 5117 opthwiener 5489 swoord1 8751 brwdomn0 9583 fpwwe2lem12 10656 ne0gt0 11340 xrinfmss 13326 sumsplit 15784 sadadd2lem2 16469 coprm 16730 vdwlem11 17011 lvecvscan 21072 lvecvscan2 21073 mplcoe1 21995 mplcoe5 21998 maducoeval2 22578 xrsxmet 24749 itg2split 25702 plydiveu 26258 quotcan 26269 coseq1 26486 angrtmuld 26770 leibpilem2 26903 leibpi 26904 wilthlem2 27031 tgldimor 28481 tgcolg 28533 axcontlem7 28949 elntg2 28964 nb3grprlem2 29360 eupth2lem2 30200 eupth2lem3lem6 30214 nmlnogt0 30778 hvmulcan 31053 hvmulcan2 31054 rmounid 32476 disjunsn 32575 xrdifh 32757 bj-snmoore 37131 nlpineqsn 37426 wl-ifp-ncond1 37482 itgaddnclem2 37703 biorfd 38249 elpadd0 39828 fsuppind 42613 or3or 44047 |
| Copyright terms: Public domain | W3C validator |