![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > biorf | Structured version Visualization version GIF version |
Description: A wff is equivalent to its disjunction with falsehood. Theorem *4.74 of [WhiteheadRussell] p. 121. (Contributed by NM, 23-Mar-1995.) (Proof shortened by Wolf Lammen, 18-Nov-2012.) |
Ref | Expression |
---|---|
biorf | ⊢ (¬ 𝜑 → (𝜓 ↔ (𝜑 ∨ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | olc 867 | . 2 ⊢ (𝜓 → (𝜑 ∨ 𝜓)) | |
2 | orel1 888 | . 2 ⊢ (¬ 𝜑 → ((𝜑 ∨ 𝜓) → 𝜓)) | |
3 | 1, 2 | impbid2 225 | 1 ⊢ (¬ 𝜑 → (𝜓 ↔ (𝜑 ∨ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∨ wo 846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 847 |
This theorem is referenced by: biortn 937 pm5.55 948 pm5.75 1028 3bior1fd 1476 3bior2fd 1478 norasslem3 1538 euor 2608 euorv 2609 euor2 2610 eueq3 3708 unineq 4278 ifor 4583 difprsnss 4803 eqsn 4833 pr1eqbg 4858 disjprgw 5144 disjprg 5145 disjxun 5147 opthwiener 5515 opthprc 5741 frxp2 8130 swoord1 8734 brwdomn0 9564 fpwwe2lem12 10637 ne0gt0 11319 xrinfmss 13289 sumsplit 15714 sadadd2lem2 16391 coprm 16648 vdwlem11 16924 lvecvscan 20724 lvecvscan2 20725 mplcoe1 21592 mplcoe5 21595 maducoeval2 22142 xrsxmet 24325 itg2split 25267 plydiveu 25811 quotcan 25822 coseq1 26034 angrtmuld 26313 leibpilem2 26446 leibpi 26447 wilthlem2 26573 tgldimor 27753 tgcolg 27805 axcontlem7 28228 elntg2 28243 nb3grprlem2 28638 eupth2lem2 29472 eupth2lem3lem6 29486 nmlnogt0 30050 hvmulcan 30325 hvmulcan2 30326 rmounid 31735 disjunsn 31825 xrdifh 31991 bj-biorfi 35461 bj-snmoore 35994 nlpineqsn 36289 wl-ifp-ncond1 36345 itgaddnclem2 36547 biorfd 37097 elpadd0 38680 fsuppind 41162 or3or 42774 |
Copyright terms: Public domain | W3C validator |