Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > biorf | Structured version Visualization version GIF version |
Description: A wff is equivalent to its disjunction with falsehood. Theorem *4.74 of [WhiteheadRussell] p. 121. (Contributed by NM, 23-Mar-1995.) (Proof shortened by Wolf Lammen, 18-Nov-2012.) |
Ref | Expression |
---|---|
biorf | ⊢ (¬ 𝜑 → (𝜓 ↔ (𝜑 ∨ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | olc 865 | . 2 ⊢ (𝜓 → (𝜑 ∨ 𝜓)) | |
2 | orel1 886 | . 2 ⊢ (¬ 𝜑 → ((𝜑 ∨ 𝜓) → 𝜓)) | |
3 | 1, 2 | impbid2 225 | 1 ⊢ (¬ 𝜑 → (𝜓 ↔ (𝜑 ∨ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∨ wo 844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 845 |
This theorem is referenced by: biortn 935 pm5.55 946 pm5.75 1026 3bior1fd 1474 3bior2fd 1476 norasslem3 1536 euor 2611 euorv 2612 euor2 2613 eueq3 3656 unineq 4223 ifor 4526 difprsnss 4745 eqsn 4775 pr1eqbg 4800 disjprgw 5084 disjprg 5085 disjxun 5087 opthwiener 5452 opthprc 5676 swoord1 8592 brwdomn0 9418 fpwwe2lem12 10491 ne0gt0 11173 xrinfmss 13137 sumsplit 15571 sadadd2lem2 16248 coprm 16505 vdwlem11 16781 lvecvscan 20471 lvecvscan2 20472 mplcoe1 21336 mplcoe5 21339 maducoeval2 21887 xrsxmet 24070 itg2split 25012 plydiveu 25556 quotcan 25567 coseq1 25779 angrtmuld 26056 leibpilem2 26189 leibpi 26190 wilthlem2 26316 tgldimor 27093 tgcolg 27145 axcontlem7 27568 elntg2 27583 nb3grprlem2 27978 eupth2lem2 28812 eupth2lem3lem6 28826 nmlnogt0 29388 hvmulcan 29663 hvmulcan2 29664 rmounid 31072 disjunsn 31161 xrdifh 31329 frxp2 34017 bj-biorfi 34856 bj-snmoore 35382 nlpineqsn 35677 wl-ifp-ncond1 35733 itgaddnclem2 35934 biorfd 36486 elpadd0 38070 fsuppind 40529 or3or 41941 |
Copyright terms: Public domain | W3C validator |