| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biorf | Structured version Visualization version GIF version | ||
| Description: A wff is equivalent to its disjunction with falsehood. Theorem *4.74 of [WhiteheadRussell] p. 121. (Contributed by NM, 23-Mar-1995.) (Proof shortened by Wolf Lammen, 18-Nov-2012.) |
| Ref | Expression |
|---|---|
| biorf | ⊢ (¬ 𝜑 → (𝜓 ↔ (𝜑 ∨ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olc 868 | . 2 ⊢ (𝜓 → (𝜑 ∨ 𝜓)) | |
| 2 | orel1 888 | . 2 ⊢ (¬ 𝜑 → ((𝜑 ∨ 𝜓) → 𝜓)) | |
| 3 | 1, 2 | impbid2 226 | 1 ⊢ (¬ 𝜑 → (𝜓 ↔ (𝜑 ∨ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: biortn 937 biorfi 938 pm5.55 950 pm5.75 1030 3bior1fd 1477 3bior2fd 1479 norasslem3 1537 euor 2606 euorv 2607 euor2 2608 eueq3 3670 unineq 4238 ifor 4530 difprsnss 4751 eqsn 4781 pr1eqbg 4809 disjprg 5087 disjxun 5089 opthwiener 5454 swoord1 8654 brwdomn0 9455 fpwwe2lem12 10533 ne0gt0 11218 xrinfmss 13209 sumsplit 15675 sadadd2lem2 16361 coprm 16622 vdwlem11 16903 lvecvscan 21049 lvecvscan2 21050 mplcoe1 21973 mplcoe5 21976 maducoeval2 22556 xrsxmet 24726 itg2split 25678 plydiveu 26234 quotcan 26245 coseq1 26462 angrtmuld 26746 leibpilem2 26879 leibpi 26880 wilthlem2 27007 tgldimor 28481 tgcolg 28533 axcontlem7 28949 elntg2 28964 nb3grprlem2 29360 eupth2lem2 30197 eupth2lem3lem6 30211 nmlnogt0 30775 hvmulcan 31050 hvmulcan2 31051 rmounid 32472 disjunsn 32572 xrdifh 32761 bj-snmoore 37153 nlpineqsn 37448 wl-ifp-ncond1 37504 itgaddnclem2 37725 biorfd 38271 elpadd0 39854 fsuppind 42629 or3or 44062 |
| Copyright terms: Public domain | W3C validator |