| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biorf | Structured version Visualization version GIF version | ||
| Description: A wff is equivalent to its disjunction with falsehood. Theorem *4.74 of [WhiteheadRussell] p. 121. (Contributed by NM, 23-Mar-1995.) (Proof shortened by Wolf Lammen, 18-Nov-2012.) |
| Ref | Expression |
|---|---|
| biorf | ⊢ (¬ 𝜑 → (𝜓 ↔ (𝜑 ∨ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olc 868 | . 2 ⊢ (𝜓 → (𝜑 ∨ 𝜓)) | |
| 2 | orel1 888 | . 2 ⊢ (¬ 𝜑 → ((𝜑 ∨ 𝜓) → 𝜓)) | |
| 3 | 1, 2 | impbid2 226 | 1 ⊢ (¬ 𝜑 → (𝜓 ↔ (𝜑 ∨ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: biortn 937 biorfi 938 pm5.55 950 pm5.75 1030 3bior1fd 1477 3bior2fd 1479 norasslem3 1536 euor 2604 euorv 2605 euor2 2606 eueq3 3673 unineq 4241 ifor 4533 difprsnss 4753 eqsn 4783 pr1eqbg 4811 disjprg 5091 disjxun 5093 opthwiener 5461 swoord1 8664 brwdomn0 9480 fpwwe2lem12 10555 ne0gt0 11239 xrinfmss 13230 sumsplit 15693 sadadd2lem2 16379 coprm 16640 vdwlem11 16921 lvecvscan 21036 lvecvscan2 21037 mplcoe1 21960 mplcoe5 21963 maducoeval2 22543 xrsxmet 24714 itg2split 25666 plydiveu 26222 quotcan 26233 coseq1 26450 angrtmuld 26734 leibpilem2 26867 leibpi 26868 wilthlem2 26995 tgldimor 28465 tgcolg 28517 axcontlem7 28933 elntg2 28948 nb3grprlem2 29344 eupth2lem2 30181 eupth2lem3lem6 30195 nmlnogt0 30759 hvmulcan 31034 hvmulcan2 31035 rmounid 32457 disjunsn 32556 xrdifh 32736 bj-snmoore 37089 nlpineqsn 37384 wl-ifp-ncond1 37440 itgaddnclem2 37661 biorfd 38207 elpadd0 39791 fsuppind 42566 or3or 43999 |
| Copyright terms: Public domain | W3C validator |