![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > biorf | Structured version Visualization version GIF version |
Description: A wff is equivalent to its disjunction with falsehood. Theorem *4.74 of [WhiteheadRussell] p. 121. (Contributed by NM, 23-Mar-1995.) (Proof shortened by Wolf Lammen, 18-Nov-2012.) |
Ref | Expression |
---|---|
biorf | ⊢ (¬ 𝜑 → (𝜓 ↔ (𝜑 ∨ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | olc 868 | . 2 ⊢ (𝜓 → (𝜑 ∨ 𝜓)) | |
2 | orel1 888 | . 2 ⊢ (¬ 𝜑 → ((𝜑 ∨ 𝜓) → 𝜓)) | |
3 | 1, 2 | impbid2 226 | 1 ⊢ (¬ 𝜑 → (𝜓 ↔ (𝜑 ∨ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-or 848 |
This theorem is referenced by: biortn 937 biorfi 938 pm5.55 950 pm5.75 1030 3bior1fd 1474 3bior2fd 1476 norasslem3 1532 euor 2608 euorv 2609 euor2 2610 eueq3 3719 unineq 4293 ifor 4584 difprsnss 4803 eqsn 4833 pr1eqbg 4861 disjprg 5143 disjxun 5145 opthwiener 5523 swoord1 8775 brwdomn0 9606 fpwwe2lem12 10679 ne0gt0 11363 xrinfmss 13348 sumsplit 15800 sadadd2lem2 16483 coprm 16744 vdwlem11 17024 lvecvscan 21130 lvecvscan2 21131 mplcoe1 22072 mplcoe5 22075 maducoeval2 22661 xrsxmet 24844 itg2split 25798 plydiveu 26354 quotcan 26365 coseq1 26581 angrtmuld 26865 leibpilem2 26998 leibpi 26999 wilthlem2 27126 tgldimor 28524 tgcolg 28576 axcontlem7 28999 elntg2 29014 nb3grprlem2 29412 eupth2lem2 30247 eupth2lem3lem6 30261 nmlnogt0 30825 hvmulcan 31100 hvmulcan2 31101 rmounid 32522 disjunsn 32613 xrdifh 32788 bj-snmoore 37095 nlpineqsn 37390 wl-ifp-ncond1 37446 itgaddnclem2 37665 biorfd 38211 elpadd0 39791 fsuppind 42576 or3or 44012 |
Copyright terms: Public domain | W3C validator |