![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > biorf | Structured version Visualization version GIF version |
Description: A wff is equivalent to its disjunction with falsehood. Theorem *4.74 of [WhiteheadRussell] p. 121. (Contributed by NM, 23-Mar-1995.) (Proof shortened by Wolf Lammen, 18-Nov-2012.) |
Ref | Expression |
---|---|
biorf | ⊢ (¬ 𝜑 → (𝜓 ↔ (𝜑 ∨ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | olc 867 | . 2 ⊢ (𝜓 → (𝜑 ∨ 𝜓)) | |
2 | orel1 887 | . 2 ⊢ (¬ 𝜑 → ((𝜑 ∨ 𝜓) → 𝜓)) | |
3 | 1, 2 | impbid2 226 | 1 ⊢ (¬ 𝜑 → (𝜓 ↔ (𝜑 ∨ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-or 847 |
This theorem is referenced by: biortn 936 biorfi 937 pm5.55 949 pm5.75 1029 3bior1fd 1475 3bior2fd 1477 norasslem3 1533 euor 2614 euorv 2615 euor2 2616 eueq3 3733 unineq 4307 ifor 4602 difprsnss 4824 eqsn 4854 pr1eqbg 4881 disjprg 5162 disjxun 5164 opthwiener 5533 swoord1 8795 brwdomn0 9638 fpwwe2lem12 10711 ne0gt0 11395 xrinfmss 13372 sumsplit 15816 sadadd2lem2 16496 coprm 16758 vdwlem11 17038 lvecvscan 21136 lvecvscan2 21137 mplcoe1 22078 mplcoe5 22081 maducoeval2 22667 xrsxmet 24850 itg2split 25804 plydiveu 26358 quotcan 26369 coseq1 26585 angrtmuld 26869 leibpilem2 27002 leibpi 27003 wilthlem2 27130 tgldimor 28528 tgcolg 28580 axcontlem7 29003 elntg2 29018 nb3grprlem2 29416 eupth2lem2 30251 eupth2lem3lem6 30265 nmlnogt0 30829 hvmulcan 31104 hvmulcan2 31105 rmounid 32523 disjunsn 32616 xrdifh 32785 bj-snmoore 37079 nlpineqsn 37374 wl-ifp-ncond1 37430 itgaddnclem2 37639 biorfd 38186 elpadd0 39766 fsuppind 42545 or3or 43985 |
Copyright terms: Public domain | W3C validator |