| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biorf | Structured version Visualization version GIF version | ||
| Description: A wff is equivalent to its disjunction with falsehood. Theorem *4.74 of [WhiteheadRussell] p. 121. (Contributed by NM, 23-Mar-1995.) (Proof shortened by Wolf Lammen, 18-Nov-2012.) |
| Ref | Expression |
|---|---|
| biorf | ⊢ (¬ 𝜑 → (𝜓 ↔ (𝜑 ∨ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olc 868 | . 2 ⊢ (𝜓 → (𝜑 ∨ 𝜓)) | |
| 2 | orel1 888 | . 2 ⊢ (¬ 𝜑 → ((𝜑 ∨ 𝜓) → 𝜓)) | |
| 3 | 1, 2 | impbid2 226 | 1 ⊢ (¬ 𝜑 → (𝜓 ↔ (𝜑 ∨ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: biortn 937 biorfi 938 pm5.55 950 pm5.75 1030 3bior1fd 1477 3bior2fd 1479 norasslem3 1536 euor 2605 euorv 2606 euor2 2607 eueq3 3685 unineq 4254 ifor 4546 difprsnss 4766 eqsn 4796 pr1eqbg 4824 disjprg 5106 disjxun 5108 opthwiener 5477 swoord1 8706 brwdomn0 9529 fpwwe2lem12 10602 ne0gt0 11286 xrinfmss 13277 sumsplit 15741 sadadd2lem2 16427 coprm 16688 vdwlem11 16969 lvecvscan 21028 lvecvscan2 21029 mplcoe1 21951 mplcoe5 21954 maducoeval2 22534 xrsxmet 24705 itg2split 25657 plydiveu 26213 quotcan 26224 coseq1 26441 angrtmuld 26725 leibpilem2 26858 leibpi 26859 wilthlem2 26986 tgldimor 28436 tgcolg 28488 axcontlem7 28904 elntg2 28919 nb3grprlem2 29315 eupth2lem2 30155 eupth2lem3lem6 30169 nmlnogt0 30733 hvmulcan 31008 hvmulcan2 31009 rmounid 32431 disjunsn 32530 xrdifh 32710 bj-snmoore 37108 nlpineqsn 37403 wl-ifp-ncond1 37459 itgaddnclem2 37680 biorfd 38226 elpadd0 39810 fsuppind 42585 or3or 44019 |
| Copyright terms: Public domain | W3C validator |