Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > biorf | Structured version Visualization version GIF version |
Description: A wff is equivalent to its disjunction with falsehood. Theorem *4.74 of [WhiteheadRussell] p. 121. (Contributed by NM, 23-Mar-1995.) (Proof shortened by Wolf Lammen, 18-Nov-2012.) |
Ref | Expression |
---|---|
biorf | ⊢ (¬ 𝜑 → (𝜓 ↔ (𝜑 ∨ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | olc 864 | . 2 ⊢ (𝜓 → (𝜑 ∨ 𝜓)) | |
2 | orel1 885 | . 2 ⊢ (¬ 𝜑 → ((𝜑 ∨ 𝜓) → 𝜓)) | |
3 | 1, 2 | impbid2 225 | 1 ⊢ (¬ 𝜑 → (𝜓 ↔ (𝜑 ∨ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∨ wo 843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 844 |
This theorem is referenced by: biortn 934 pm5.55 945 pm5.75 1025 3bior1fd 1473 3bior2fd 1475 norasslem3 1534 euor 2613 euorv 2614 euor2 2615 eueq3 3641 unineq 4208 ifor 4510 difprsnss 4729 eqsn 4759 pr1eqbg 4784 dfopif 4797 disjprgw 5065 disjprg 5066 disjxun 5068 opthwiener 5422 opthprc 5642 swoord1 8487 brwdomn0 9258 fpwwe2lem12 10329 ne0gt0 11010 xrinfmss 12973 sumsplit 15408 sadadd2lem2 16085 coprm 16344 vdwlem11 16620 lvecvscan 20288 lvecvscan2 20289 mplcoe1 21148 mplcoe5 21151 maducoeval2 21697 xrsxmet 23878 itg2split 24819 plydiveu 25363 quotcan 25374 coseq1 25586 angrtmuld 25863 leibpilem2 25996 leibpi 25997 wilthlem2 26123 tgldimor 26767 tgcolg 26819 axcontlem7 27241 elntg2 27256 nb3grprlem2 27651 eupth2lem2 28484 eupth2lem3lem6 28498 nmlnogt0 29060 hvmulcan 29335 hvmulcan2 29336 rmounid 30744 disjunsn 30834 xrdifh 31003 frxp2 33718 bj-biorfi 34692 bj-snmoore 35211 nlpineqsn 35506 wl-ifp-ncond1 35562 itgaddnclem2 35763 elpadd0 37750 fsuppind 40202 or3or 41520 |
Copyright terms: Public domain | W3C validator |