| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biorf | Structured version Visualization version GIF version | ||
| Description: A wff is equivalent to its disjunction with falsehood. Theorem *4.74 of [WhiteheadRussell] p. 121. (Contributed by NM, 23-Mar-1995.) (Proof shortened by Wolf Lammen, 18-Nov-2012.) |
| Ref | Expression |
|---|---|
| biorf | ⊢ (¬ 𝜑 → (𝜓 ↔ (𝜑 ∨ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olc 868 | . 2 ⊢ (𝜓 → (𝜑 ∨ 𝜓)) | |
| 2 | orel1 888 | . 2 ⊢ (¬ 𝜑 → ((𝜑 ∨ 𝜓) → 𝜓)) | |
| 3 | 1, 2 | impbid2 226 | 1 ⊢ (¬ 𝜑 → (𝜓 ↔ (𝜑 ∨ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: biortn 937 biorfi 938 pm5.55 950 pm5.75 1030 3bior1fd 1477 3bior2fd 1479 norasslem3 1536 euor 2604 euorv 2605 euor2 2606 eueq3 3682 unineq 4251 ifor 4543 difprsnss 4763 eqsn 4793 pr1eqbg 4821 disjprg 5103 disjxun 5105 opthwiener 5474 swoord1 8703 brwdomn0 9522 fpwwe2lem12 10595 ne0gt0 11279 xrinfmss 13270 sumsplit 15734 sadadd2lem2 16420 coprm 16681 vdwlem11 16962 lvecvscan 21021 lvecvscan2 21022 mplcoe1 21944 mplcoe5 21947 maducoeval2 22527 xrsxmet 24698 itg2split 25650 plydiveu 26206 quotcan 26217 coseq1 26434 angrtmuld 26718 leibpilem2 26851 leibpi 26852 wilthlem2 26979 tgldimor 28429 tgcolg 28481 axcontlem7 28897 elntg2 28912 nb3grprlem2 29308 eupth2lem2 30148 eupth2lem3lem6 30162 nmlnogt0 30726 hvmulcan 31001 hvmulcan2 31002 rmounid 32424 disjunsn 32523 xrdifh 32703 bj-snmoore 37101 nlpineqsn 37396 wl-ifp-ncond1 37452 itgaddnclem2 37673 biorfd 38219 elpadd0 39803 fsuppind 42578 or3or 44012 |
| Copyright terms: Public domain | W3C validator |