| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biorf | Structured version Visualization version GIF version | ||
| Description: A wff is equivalent to its disjunction with falsehood. Theorem *4.74 of [WhiteheadRussell] p. 121. (Contributed by NM, 23-Mar-1995.) (Proof shortened by Wolf Lammen, 18-Nov-2012.) |
| Ref | Expression |
|---|---|
| biorf | ⊢ (¬ 𝜑 → (𝜓 ↔ (𝜑 ∨ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olc 868 | . 2 ⊢ (𝜓 → (𝜑 ∨ 𝜓)) | |
| 2 | orel1 888 | . 2 ⊢ (¬ 𝜑 → ((𝜑 ∨ 𝜓) → 𝜓)) | |
| 3 | 1, 2 | impbid2 226 | 1 ⊢ (¬ 𝜑 → (𝜓 ↔ (𝜑 ∨ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: biortn 937 biorfi 938 pm5.55 950 pm5.75 1030 3bior1fd 1477 3bior2fd 1479 norasslem3 1537 euor 2608 euorv 2609 euor2 2610 eueq3 3666 unineq 4237 ifor 4531 difprsnss 4752 eqsn 4782 pr1eqbg 4810 disjprg 5091 disjxun 5093 opthwiener 5459 swoord1 8662 brwdomn0 9464 fpwwe2lem12 10542 ne0gt0 11227 xrinfmss 13213 sumsplit 15679 sadadd2lem2 16365 coprm 16626 vdwlem11 16907 lvecvscan 21052 lvecvscan2 21053 mplcoe1 21975 mplcoe5 21978 maducoeval2 22558 xrsxmet 24728 itg2split 25680 plydiveu 26236 quotcan 26247 coseq1 26464 angrtmuld 26748 leibpilem2 26881 leibpi 26882 wilthlem2 27009 tgldimor 28483 tgcolg 28535 axcontlem7 28952 elntg2 28967 nb3grprlem2 29363 eupth2lem2 30203 eupth2lem3lem6 30217 nmlnogt0 30781 hvmulcan 31056 hvmulcan2 31057 rmounid 32478 disjunsn 32578 xrdifh 32769 bj-snmoore 37180 nlpineqsn 37475 wl-ifp-ncond1 37531 itgaddnclem2 37742 biorfd 38295 elpadd0 39931 fsuppind 42711 or3or 44143 |
| Copyright terms: Public domain | W3C validator |