Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > biorf | Structured version Visualization version GIF version |
Description: A wff is equivalent to its disjunction with falsehood. Theorem *4.74 of [WhiteheadRussell] p. 121. (Contributed by NM, 23-Mar-1995.) (Proof shortened by Wolf Lammen, 18-Nov-2012.) |
Ref | Expression |
---|---|
biorf | ⊢ (¬ 𝜑 → (𝜓 ↔ (𝜑 ∨ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | olc 865 | . 2 ⊢ (𝜓 → (𝜑 ∨ 𝜓)) | |
2 | orel1 886 | . 2 ⊢ (¬ 𝜑 → ((𝜑 ∨ 𝜓) → 𝜓)) | |
3 | 1, 2 | impbid2 225 | 1 ⊢ (¬ 𝜑 → (𝜓 ↔ (𝜑 ∨ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∨ wo 844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 845 |
This theorem is referenced by: biortn 935 pm5.55 946 pm5.75 1026 3bior1fd 1474 3bior2fd 1476 norasslem3 1534 euor 2613 euorv 2614 euor2 2615 eueq3 3646 unineq 4211 ifor 4513 difprsnss 4732 eqsn 4762 pr1eqbg 4787 dfopif 4800 disjprgw 5069 disjprg 5070 disjxun 5072 opthwiener 5428 opthprc 5651 swoord1 8529 brwdomn0 9328 fpwwe2lem12 10398 ne0gt0 11080 xrinfmss 13044 sumsplit 15480 sadadd2lem2 16157 coprm 16416 vdwlem11 16692 lvecvscan 20373 lvecvscan2 20374 mplcoe1 21238 mplcoe5 21241 maducoeval2 21789 xrsxmet 23972 itg2split 24914 plydiveu 25458 quotcan 25469 coseq1 25681 angrtmuld 25958 leibpilem2 26091 leibpi 26092 wilthlem2 26218 tgldimor 26863 tgcolg 26915 axcontlem7 27338 elntg2 27353 nb3grprlem2 27748 eupth2lem2 28583 eupth2lem3lem6 28597 nmlnogt0 29159 hvmulcan 29434 hvmulcan2 29435 rmounid 30843 disjunsn 30933 xrdifh 31101 frxp2 33791 bj-biorfi 34765 bj-snmoore 35284 nlpineqsn 35579 wl-ifp-ncond1 35635 itgaddnclem2 35836 elpadd0 37823 fsuppind 40279 or3or 41631 |
Copyright terms: Public domain | W3C validator |