| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biorf | Structured version Visualization version GIF version | ||
| Description: A wff is equivalent to its disjunction with falsehood. Theorem *4.74 of [WhiteheadRussell] p. 121. (Contributed by NM, 23-Mar-1995.) (Proof shortened by Wolf Lammen, 18-Nov-2012.) |
| Ref | Expression |
|---|---|
| biorf | ⊢ (¬ 𝜑 → (𝜓 ↔ (𝜑 ∨ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olc 868 | . 2 ⊢ (𝜓 → (𝜑 ∨ 𝜓)) | |
| 2 | orel1 888 | . 2 ⊢ (¬ 𝜑 → ((𝜑 ∨ 𝜓) → 𝜓)) | |
| 3 | 1, 2 | impbid2 226 | 1 ⊢ (¬ 𝜑 → (𝜓 ↔ (𝜑 ∨ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: biortn 937 biorfi 938 pm5.55 950 pm5.75 1030 3bior1fd 1476 3bior2fd 1478 norasslem3 1535 euor 2609 euorv 2610 euor2 2611 eueq3 3692 unineq 4261 ifor 4553 difprsnss 4773 eqsn 4803 pr1eqbg 4831 disjprg 5113 disjxun 5115 opthwiener 5487 swoord1 8746 brwdomn0 9576 fpwwe2lem12 10649 ne0gt0 11333 xrinfmss 13319 sumsplit 15773 sadadd2lem2 16456 coprm 16717 vdwlem11 16998 lvecvscan 21059 lvecvscan2 21060 mplcoe1 21982 mplcoe5 21985 maducoeval2 22565 xrsxmet 24736 itg2split 25689 plydiveu 26245 quotcan 26256 coseq1 26472 angrtmuld 26756 leibpilem2 26889 leibpi 26890 wilthlem2 27017 tgldimor 28415 tgcolg 28467 axcontlem7 28883 elntg2 28898 nb3grprlem2 29294 eupth2lem2 30134 eupth2lem3lem6 30148 nmlnogt0 30712 hvmulcan 30987 hvmulcan2 30988 rmounid 32410 disjunsn 32509 xrdifh 32694 bj-snmoore 37060 nlpineqsn 37355 wl-ifp-ncond1 37411 itgaddnclem2 37632 biorfd 38178 elpadd0 39757 fsuppind 42545 or3or 43979 |
| Copyright terms: Public domain | W3C validator |