Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nottru | Structured version Visualization version GIF version |
Description: A ¬ identity. (Contributed by Anthony Hart, 22-Oct-2010.) |
Ref | Expression |
---|---|
nottru | ⊢ (¬ ⊤ ↔ ⊥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fal 1556 | . 2 ⊢ (⊥ ↔ ¬ ⊤) | |
2 | 1 | bicomi 227 | 1 ⊢ (¬ ⊤ ↔ ⊥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 209 ⊤wtru 1544 ⊥wfal 1555 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-fal 1556 |
This theorem is referenced by: trunantru 1584 truxortru 1588 falxorfal 1591 |
Copyright terms: Public domain | W3C validator |