|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > nottru | Structured version Visualization version GIF version | ||
| Description: A ¬ identity. (Contributed by Anthony Hart, 22-Oct-2010.) | 
| Ref | Expression | 
|---|---|
| nottru | ⊢ (¬ ⊤ ↔ ⊥) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-fal 1552 | . 2 ⊢ (⊥ ↔ ¬ ⊤) | |
| 2 | 1 | bicomi 224 | 1 ⊢ (¬ ⊤ ↔ ⊥) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 ↔ wb 206 ⊤wtru 1540 ⊥wfal 1551 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-fal 1552 | 
| This theorem is referenced by: trunantru 1580 truxortru 1584 falxorfal 1587 | 
| Copyright terms: Public domain | W3C validator |