MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nottru Structured version   Visualization version   GIF version

Theorem nottru 1567
Description: A ¬ identity. (Contributed by Anthony Hart, 22-Oct-2010.)
Assertion
Ref Expression
nottru (¬ ⊤ ↔ ⊥)

Proof of Theorem nottru
StepHypRef Expression
1 df-fal 1553 . 2 (⊥ ↔ ¬ ⊤)
21bicomi 224 1 (¬ ⊤ ↔ ⊥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wtru 1541  wfal 1552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-fal 1553
This theorem is referenced by:  trunantru  1581  truxortru  1585  falxorfal  1588
  Copyright terms: Public domain W3C validator