MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nottru Structured version   Visualization version   GIF version

Theorem nottru 1566
Description: A ¬ identity. (Contributed by Anthony Hart, 22-Oct-2010.)
Assertion
Ref Expression
nottru (¬ ⊤ ↔ ⊥)

Proof of Theorem nottru
StepHypRef Expression
1 df-fal 1552 . 2 (⊥ ↔ ¬ ⊤)
21bicomi 223 1 (¬ ⊤ ↔ ⊥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wtru 1540  wfal 1551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-fal 1552
This theorem is referenced by:  trunantru  1580  truxortru  1584  falxorfal  1587
  Copyright terms: Public domain W3C validator