![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > truxortru | Structured version Visualization version GIF version |
Description: A ⊻ identity. (Contributed by David A. Wheeler, 8-May-2015.) |
Ref | Expression |
---|---|
truxortru | ⊢ ((⊤ ⊻ ⊤) ↔ ⊥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xor 1583 | . . 3 ⊢ ((⊤ ⊻ ⊤) ↔ ¬ (⊤ ↔ ⊤)) | |
2 | trubitru 1631 | . . 3 ⊢ ((⊤ ↔ ⊤) ↔ ⊤) | |
3 | 1, 2 | xchbinx 326 | . 2 ⊢ ((⊤ ⊻ ⊤) ↔ ¬ ⊤) |
4 | nottru 1629 | . 2 ⊢ (¬ ⊤ ↔ ⊥) | |
5 | 3, 4 | bitri 267 | 1 ⊢ ((⊤ ⊻ ⊤) ↔ ⊥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 198 ⊻ wxo 1582 ⊤wtru 1602 ⊥wfal 1614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-xor 1583 df-tru 1605 df-fal 1615 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |