MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  notfal Structured version   Visualization version   GIF version

Theorem notfal 1567
Description: A ¬ identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.)
Assertion
Ref Expression
notfal (¬ ⊥ ↔ ⊤)

Proof of Theorem notfal
StepHypRef Expression
1 fal 1553 . 2 ¬ ⊥
21bitru 1548 1 (¬ ⊥ ↔ ⊤)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wtru 1540  wfal 1551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-tru 1542  df-fal 1552
This theorem is referenced by:  trunanfal  1581  falnanfal  1583  truxorfal  1585  falnorfal  1593  falnorfalOLD  1594  wl-1xor  35580  ifpdfnan  40991
  Copyright terms: Public domain W3C validator