MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  notfal Structured version   Visualization version   GIF version

Theorem notfal 1569
Description: A ¬ identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.)
Assertion
Ref Expression
notfal (¬ ⊥ ↔ ⊤)

Proof of Theorem notfal
StepHypRef Expression
1 fal 1555 . 2 ¬ ⊥
21bitru 1550 1 (¬ ⊥ ↔ ⊤)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wtru 1542  wfal 1553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-tru 1544  df-fal 1554
This theorem is referenced by:  trunanfal  1583  falnanfal  1585  truxorfal  1587  falnorfal  1593  wl-1xor  37526  ifpdfnan  43589
  Copyright terms: Public domain W3C validator