Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > notfal | Structured version Visualization version GIF version |
Description: A ¬ identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.) |
Ref | Expression |
---|---|
notfal | ⊢ (¬ ⊥ ↔ ⊤) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fal 1553 | . 2 ⊢ ¬ ⊥ | |
2 | 1 | bitru 1548 | 1 ⊢ (¬ ⊥ ↔ ⊤) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ⊤wtru 1540 ⊥wfal 1551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-tru 1542 df-fal 1552 |
This theorem is referenced by: trunanfal 1581 falnanfal 1583 truxorfal 1585 falnorfal 1592 falnorfalOLD 1593 wl-1xor 35653 ifpdfnan 41093 |
Copyright terms: Public domain | W3C validator |