![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > notfal | Structured version Visualization version GIF version |
Description: A ¬ identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.) |
Ref | Expression |
---|---|
notfal | ⊢ (¬ ⊥ ↔ ⊤) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fal 1551 | . 2 ⊢ ¬ ⊥ | |
2 | 1 | bitru 1546 | 1 ⊢ (¬ ⊥ ↔ ⊤) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ⊤wtru 1538 ⊥wfal 1549 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-tru 1540 df-fal 1550 |
This theorem is referenced by: trunanfal 1579 falnanfal 1581 truxorfal 1583 falnorfal 1589 wl-1xor 37448 ifpdfnan 43448 |
Copyright terms: Public domain | W3C validator |