Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > trunantru | Structured version Visualization version GIF version |
Description: A ⊼ identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.) |
Ref | Expression |
---|---|
trunantru | ⊢ ((⊤ ⊼ ⊤) ↔ ⊥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nannot 1491 | . 2 ⊢ (¬ ⊤ ↔ (⊤ ⊼ ⊤)) | |
2 | nottru 1566 | . 2 ⊢ (¬ ⊤ ↔ ⊥) | |
3 | 1, 2 | bitr3i 280 | 1 ⊢ ((⊤ ⊼ ⊤) ↔ ⊥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 209 ⊼ wnan 1483 ⊤wtru 1540 ⊥wfal 1551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 401 df-nan 1484 df-fal 1552 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |