MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trunantru Structured version   Visualization version   GIF version

Theorem trunantru 1549
Description: A identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.)
Assertion
Ref Expression
trunantru ((⊤ ⊼ ⊤) ↔ ⊥)

Proof of Theorem trunantru
StepHypRef Expression
1 nannot 1474 . 2 (¬ ⊤ ↔ (⊤ ⊼ ⊤))
2 nottru 1535 . 2 (¬ ⊤ ↔ ⊥)
31, 2bitr3i 269 1 ((⊤ ⊼ ⊤) ↔ ⊥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 198  wnan 1464  wtru 1509  wfal 1520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 199  df-an 388  df-nan 1465  df-fal 1521
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator