MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nsyl2OLD Structured version   Visualization version   GIF version

Theorem nsyl2OLD 152
Description: Obsolete version of nsyl2 143 as of 14-Nov-2023. (Contributed by NM, 26-Jun-1994.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
nsyl2OLD.1 (𝜑 → ¬ 𝜓)
nsyl2OLD.2 𝜒𝜓)
Assertion
Ref Expression
nsyl2OLD (𝜑𝜒)

Proof of Theorem nsyl2OLD
StepHypRef Expression
1 nsyl2OLD.1 . 2 (𝜑 → ¬ 𝜓)
2 nsyl2OLD.2 . . 3 𝜒𝜓)
32a1i 11 . 2 (𝜑 → (¬ 𝜒𝜓))
41, 3mt3d 150 1 (𝜑𝜒)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator