| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mt3d | Structured version Visualization version GIF version | ||
| Description: Modus tollens deduction. (Contributed by NM, 26-Mar-1995.) |
| Ref | Expression |
|---|---|
| mt3d.1 | ⊢ (𝜑 → ¬ 𝜒) |
| mt3d.2 | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| mt3d | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mt3d.1 | . 2 ⊢ (𝜑 → ¬ 𝜒) | |
| 2 | mt3d.2 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) | |
| 3 | 2 | con1d 145 | . 2 ⊢ (𝜑 → (¬ 𝜒 → 𝜓)) |
| 4 | 1, 3 | mpd 15 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: mt3i 149 olcnd 877 disjss3 5090 nnsuc 7814 poxp2 8073 frrlem14 8229 unxpdomlem2 9141 oismo 9426 cnfcom3lem 9593 rankelb 9714 fin33i 10257 isf34lem4 10265 canthp1lem2 10541 gchdju1 10544 pwfseqlem3 10548 inttsk 10662 r1tskina 10670 nqereu 10817 zbtwnre 12841 discr1 14143 seqcoll2 14369 bitsfzo 16343 bitsf1 16354 eucalglt 16493 4sqlem17 16870 4sqlem18 16871 ramubcl 16927 psgnunilem5 19404 odnncl 19455 gexnnod 19498 sylow1lem1 19508 torsubg 19764 prmcyg 19804 ablfacrplem 19977 pgpfac1lem2 19987 pgpfac1lem3a 19988 pgpfac1lem3 19989 xrsdsreclblem 21347 prmirredlem 21407 ppttop 22920 pptbas 22921 regr1lem 23652 alexsublem 23957 reconnlem1 24740 metnrmlem1a 24772 vitalilem4 25537 vitalilem5 25538 itg2gt0 25686 rollelem 25918 lhop1lem 25943 coefv0 26178 plyexmo 26246 lgamucov 26973 ppinprm 27087 chtnprm 27089 lgsdir 27268 lgseisenlem1 27311 2sqlem7 27360 2sqblem 27367 pntpbnd1 27522 madebdaylemlrcut 27842 dfon2lem8 35823 poimirlem25 37684 fdc 37784 ac6s6 38211 2atm 39565 llnmlplnN 39577 trlval3 40225 cdleme0moN 40263 cdleme18c 40331 qirropth 42940 aacllem 49832 |
| Copyright terms: Public domain | W3C validator |