![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mt3d | Structured version Visualization version GIF version |
Description: Modus tollens deduction. (Contributed by NM, 26-Mar-1995.) |
Ref | Expression |
---|---|
mt3d.1 | ⊢ (𝜑 → ¬ 𝜒) |
mt3d.2 | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
Ref | Expression |
---|---|
mt3d | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mt3d.1 | . 2 ⊢ (𝜑 → ¬ 𝜒) | |
2 | mt3d.2 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) | |
3 | 2 | con1d 145 | . 2 ⊢ (𝜑 → (¬ 𝜒 → 𝜓)) |
4 | 1, 3 | mpd 15 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: mt3i 149 olcnd 876 ecase23d 1473 disjss3 5165 nnsuc 7921 poxp2 8184 frrlem14 8340 unxpdomlem2 9314 oismo 9609 cnfcom3lem 9772 rankelb 9893 fin33i 10438 isf34lem4 10446 canthp1lem2 10722 gchdju1 10725 pwfseqlem3 10729 inttsk 10843 r1tskina 10851 nqereu 10998 zbtwnre 13011 discr1 14288 seqcoll2 14514 bitsfzo 16481 bitsf1 16492 eucalglt 16632 4sqlem17 17008 4sqlem18 17009 ramubcl 17065 psgnunilem5 19536 odnncl 19587 gexnnod 19630 sylow1lem1 19640 torsubg 19896 prmcyg 19936 ablfacrplem 20109 pgpfac1lem2 20119 pgpfac1lem3a 20120 pgpfac1lem3 20121 xrsdsreclblem 21453 prmirredlem 21506 ppttop 23035 pptbas 23036 regr1lem 23768 alexsublem 24073 reconnlem1 24867 metnrmlem1a 24899 vitalilem4 25665 vitalilem5 25666 itg2gt0 25815 rollelem 26047 lhop1lem 26072 coefv0 26307 plyexmo 26373 lgamucov 27099 ppinprm 27213 chtnprm 27215 lgsdir 27394 lgseisenlem1 27437 2sqlem7 27486 2sqblem 27493 pntpbnd1 27648 madebdaylemlrcut 27955 dfon2lem8 35754 poimirlem25 37605 fdc 37705 ac6s6 38132 2atm 39484 llnmlplnN 39496 trlval3 40144 cdleme0moN 40182 cdleme18c 40250 qirropth 42864 aacllem 48895 |
Copyright terms: Public domain | W3C validator |