| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mt3d | Structured version Visualization version GIF version | ||
| Description: Modus tollens deduction. (Contributed by NM, 26-Mar-1995.) |
| Ref | Expression |
|---|---|
| mt3d.1 | ⊢ (𝜑 → ¬ 𝜒) |
| mt3d.2 | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| mt3d | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mt3d.1 | . 2 ⊢ (𝜑 → ¬ 𝜒) | |
| 2 | mt3d.2 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) | |
| 3 | 2 | con1d 145 | . 2 ⊢ (𝜑 → (¬ 𝜒 → 𝜓)) |
| 4 | 1, 3 | mpd 15 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: mt3i 149 olcnd 877 disjss3 5123 nnsuc 7884 poxp2 8147 frrlem14 8303 unxpdomlem2 9264 oismo 9559 cnfcom3lem 9722 rankelb 9843 fin33i 10388 isf34lem4 10396 canthp1lem2 10672 gchdju1 10675 pwfseqlem3 10679 inttsk 10793 r1tskina 10801 nqereu 10948 zbtwnre 12967 discr1 14262 seqcoll2 14488 bitsfzo 16459 bitsf1 16470 eucalglt 16609 4sqlem17 16986 4sqlem18 16987 ramubcl 17043 psgnunilem5 19480 odnncl 19531 gexnnod 19574 sylow1lem1 19584 torsubg 19840 prmcyg 19880 ablfacrplem 20053 pgpfac1lem2 20063 pgpfac1lem3a 20064 pgpfac1lem3 20065 xrsdsreclblem 21385 prmirredlem 21438 ppttop 22950 pptbas 22951 regr1lem 23682 alexsublem 23987 reconnlem1 24771 metnrmlem1a 24803 vitalilem4 25569 vitalilem5 25570 itg2gt0 25718 rollelem 25950 lhop1lem 25975 coefv0 26210 plyexmo 26278 lgamucov 27005 ppinprm 27119 chtnprm 27121 lgsdir 27300 lgseisenlem1 27343 2sqlem7 27392 2sqblem 27399 pntpbnd1 27554 madebdaylemlrcut 27867 dfon2lem8 35813 poimirlem25 37674 fdc 37774 ac6s6 38201 2atm 39551 llnmlplnN 39563 trlval3 40211 cdleme0moN 40249 cdleme18c 40317 qirropth 42898 aacllem 49632 |
| Copyright terms: Public domain | W3C validator |