| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mt3d | Structured version Visualization version GIF version | ||
| Description: Modus tollens deduction. (Contributed by NM, 26-Mar-1995.) |
| Ref | Expression |
|---|---|
| mt3d.1 | ⊢ (𝜑 → ¬ 𝜒) |
| mt3d.2 | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| mt3d | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mt3d.1 | . 2 ⊢ (𝜑 → ¬ 𝜒) | |
| 2 | mt3d.2 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) | |
| 3 | 2 | con1d 145 | . 2 ⊢ (𝜑 → (¬ 𝜒 → 𝜓)) |
| 4 | 1, 3 | mpd 15 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: mt3i 149 olcnd 877 disjss3 5106 nnsuc 7860 poxp2 8122 frrlem14 8278 unxpdomlem2 9198 oismo 9493 cnfcom3lem 9656 rankelb 9777 fin33i 10322 isf34lem4 10330 canthp1lem2 10606 gchdju1 10609 pwfseqlem3 10613 inttsk 10727 r1tskina 10735 nqereu 10882 zbtwnre 12905 discr1 14204 seqcoll2 14430 bitsfzo 16405 bitsf1 16416 eucalglt 16555 4sqlem17 16932 4sqlem18 16933 ramubcl 16989 psgnunilem5 19424 odnncl 19475 gexnnod 19518 sylow1lem1 19528 torsubg 19784 prmcyg 19824 ablfacrplem 19997 pgpfac1lem2 20007 pgpfac1lem3a 20008 pgpfac1lem3 20009 xrsdsreclblem 21329 prmirredlem 21382 ppttop 22894 pptbas 22895 regr1lem 23626 alexsublem 23931 reconnlem1 24715 metnrmlem1a 24747 vitalilem4 25512 vitalilem5 25513 itg2gt0 25661 rollelem 25893 lhop1lem 25918 coefv0 26153 plyexmo 26221 lgamucov 26948 ppinprm 27062 chtnprm 27064 lgsdir 27243 lgseisenlem1 27286 2sqlem7 27335 2sqblem 27342 pntpbnd1 27497 madebdaylemlrcut 27810 dfon2lem8 35778 poimirlem25 37639 fdc 37739 ac6s6 38166 2atm 39521 llnmlplnN 39533 trlval3 40181 cdleme0moN 40219 cdleme18c 40287 qirropth 42896 aacllem 49790 |
| Copyright terms: Public domain | W3C validator |