Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mt3d | Structured version Visualization version GIF version |
Description: Modus tollens deduction. (Contributed by NM, 26-Mar-1995.) |
Ref | Expression |
---|---|
mt3d.1 | ⊢ (𝜑 → ¬ 𝜒) |
mt3d.2 | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
Ref | Expression |
---|---|
mt3d | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mt3d.1 | . 2 ⊢ (𝜑 → ¬ 𝜒) | |
2 | mt3d.2 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) | |
3 | 2 | con1d 145 | . 2 ⊢ (𝜑 → (¬ 𝜒 → 𝜓)) |
4 | 1, 3 | mpd 15 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: mt3i 149 olcnd 874 ecase23d 1472 disjss3 5073 nnsuc 7730 frrlem14 8115 unxpdomlem2 9028 oismo 9299 cnfcom3lem 9461 rankelb 9582 fin33i 10125 isf34lem4 10133 canthp1lem2 10409 gchdju1 10412 pwfseqlem3 10416 inttsk 10530 r1tskina 10538 nqereu 10685 zbtwnre 12686 discr1 13954 seqcoll2 14179 bitsfzo 16142 bitsf1 16153 eucalglt 16290 4sqlem17 16662 4sqlem18 16663 ramubcl 16719 psgnunilem5 19102 odnncl 19153 gexnnod 19193 sylow1lem1 19203 torsubg 19455 prmcyg 19495 ablfacrplem 19668 pgpfac1lem2 19678 pgpfac1lem3a 19679 pgpfac1lem3 19680 xrsdsreclblem 20644 prmirredlem 20694 ppttop 22157 pptbas 22158 regr1lem 22890 alexsublem 23195 reconnlem1 23989 metnrmlem1a 24021 vitalilem4 24775 vitalilem5 24776 itg2gt0 24925 rollelem 25153 lhop1lem 25177 coefv0 25409 plyexmo 25473 lgamucov 26187 ppinprm 26301 chtnprm 26303 lgsdir 26480 lgseisenlem1 26523 2sqlem7 26572 2sqblem 26579 pntpbnd1 26734 dfon2lem8 33766 poxp2 33790 poxp3 33796 madebdaylemlrcut 34079 poimirlem25 35802 fdc 35903 ac6s6 36330 2atm 37541 llnmlplnN 37553 trlval3 38201 cdleme0moN 38239 cdleme18c 38307 qirropth 40730 aacllem 46505 |
Copyright terms: Public domain | W3C validator |