| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mt3d | Structured version Visualization version GIF version | ||
| Description: Modus tollens deduction. (Contributed by NM, 26-Mar-1995.) |
| Ref | Expression |
|---|---|
| mt3d.1 | ⊢ (𝜑 → ¬ 𝜒) |
| mt3d.2 | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| mt3d | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mt3d.1 | . 2 ⊢ (𝜑 → ¬ 𝜒) | |
| 2 | mt3d.2 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) | |
| 3 | 2 | con1d 145 | . 2 ⊢ (𝜑 → (¬ 𝜒 → 𝜓)) |
| 4 | 1, 3 | mpd 15 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: mt3i 149 olcnd 877 disjss3 5109 nnsuc 7863 poxp2 8125 frrlem14 8281 unxpdomlem2 9205 oismo 9500 cnfcom3lem 9663 rankelb 9784 fin33i 10329 isf34lem4 10337 canthp1lem2 10613 gchdju1 10616 pwfseqlem3 10620 inttsk 10734 r1tskina 10742 nqereu 10889 zbtwnre 12912 discr1 14211 seqcoll2 14437 bitsfzo 16412 bitsf1 16423 eucalglt 16562 4sqlem17 16939 4sqlem18 16940 ramubcl 16996 psgnunilem5 19431 odnncl 19482 gexnnod 19525 sylow1lem1 19535 torsubg 19791 prmcyg 19831 ablfacrplem 20004 pgpfac1lem2 20014 pgpfac1lem3a 20015 pgpfac1lem3 20016 xrsdsreclblem 21336 prmirredlem 21389 ppttop 22901 pptbas 22902 regr1lem 23633 alexsublem 23938 reconnlem1 24722 metnrmlem1a 24754 vitalilem4 25519 vitalilem5 25520 itg2gt0 25668 rollelem 25900 lhop1lem 25925 coefv0 26160 plyexmo 26228 lgamucov 26955 ppinprm 27069 chtnprm 27071 lgsdir 27250 lgseisenlem1 27293 2sqlem7 27342 2sqblem 27349 pntpbnd1 27504 madebdaylemlrcut 27817 dfon2lem8 35785 poimirlem25 37646 fdc 37746 ac6s6 38173 2atm 39528 llnmlplnN 39540 trlval3 40188 cdleme0moN 40226 cdleme18c 40294 qirropth 42903 aacllem 49794 |
| Copyright terms: Public domain | W3C validator |