Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mt3d | Structured version Visualization version GIF version |
Description: Modus tollens deduction. (Contributed by NM, 26-Mar-1995.) |
Ref | Expression |
---|---|
mt3d.1 | ⊢ (𝜑 → ¬ 𝜒) |
mt3d.2 | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
Ref | Expression |
---|---|
mt3d | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mt3d.1 | . 2 ⊢ (𝜑 → ¬ 𝜒) | |
2 | mt3d.2 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) | |
3 | 2 | con1d 145 | . 2 ⊢ (𝜑 → (¬ 𝜒 → 𝜓)) |
4 | 1, 3 | mpd 15 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: mt3i 149 olcnd 873 ecase23d 1471 disjss3 5069 nnsuc 7705 frrlem14 8086 unxpdomlem2 8957 oismo 9229 cnfcom3lem 9391 rankelb 9513 fin33i 10056 isf34lem4 10064 canthp1lem2 10340 gchdju1 10343 pwfseqlem3 10347 inttsk 10461 r1tskina 10469 nqereu 10616 zbtwnre 12615 discr1 13882 seqcoll2 14107 bitsfzo 16070 bitsf1 16081 eucalglt 16218 4sqlem17 16590 4sqlem18 16591 ramubcl 16647 psgnunilem5 19017 odnncl 19068 gexnnod 19108 sylow1lem1 19118 torsubg 19370 prmcyg 19410 ablfacrplem 19583 pgpfac1lem2 19593 pgpfac1lem3a 19594 pgpfac1lem3 19595 xrsdsreclblem 20556 prmirredlem 20606 ppttop 22065 pptbas 22066 regr1lem 22798 alexsublem 23103 reconnlem1 23895 metnrmlem1a 23927 vitalilem4 24680 vitalilem5 24681 itg2gt0 24830 rollelem 25058 lhop1lem 25082 coefv0 25314 plyexmo 25378 lgamucov 26092 ppinprm 26206 chtnprm 26208 lgsdir 26385 lgseisenlem1 26428 2sqlem7 26477 2sqblem 26484 pntpbnd1 26639 dfon2lem8 33672 poxp2 33717 poxp3 33723 madebdaylemlrcut 34006 poimirlem25 35729 fdc 35830 ac6s6 36257 2atm 37468 llnmlplnN 37480 trlval3 38128 cdleme0moN 38166 cdleme18c 38234 qirropth 40646 aacllem 46391 |
Copyright terms: Public domain | W3C validator |