![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mt3d | Structured version Visualization version GIF version |
Description: Modus tollens deduction. (Contributed by NM, 26-Mar-1995.) |
Ref | Expression |
---|---|
mt3d.1 | ⊢ (𝜑 → ¬ 𝜒) |
mt3d.2 | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
Ref | Expression |
---|---|
mt3d | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mt3d.1 | . 2 ⊢ (𝜑 → ¬ 𝜒) | |
2 | mt3d.2 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) | |
3 | 2 | con1d 145 | . 2 ⊢ (𝜑 → (¬ 𝜒 → 𝜓)) |
4 | 1, 3 | mpd 15 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: mt3i 149 olcnd 876 ecase23d 1474 disjss3 5148 nnsuc 7873 poxp2 8129 frrlem14 8284 unxpdomlem2 9251 oismo 9535 cnfcom3lem 9698 rankelb 9819 fin33i 10364 isf34lem4 10372 canthp1lem2 10648 gchdju1 10651 pwfseqlem3 10655 inttsk 10769 r1tskina 10777 nqereu 10924 zbtwnre 12930 discr1 14202 seqcoll2 14426 bitsfzo 16376 bitsf1 16387 eucalglt 16522 4sqlem17 16894 4sqlem18 16895 ramubcl 16951 psgnunilem5 19362 odnncl 19413 gexnnod 19456 sylow1lem1 19466 torsubg 19722 prmcyg 19762 ablfacrplem 19935 pgpfac1lem2 19945 pgpfac1lem3a 19946 pgpfac1lem3 19947 xrsdsreclblem 20991 prmirredlem 21042 ppttop 22510 pptbas 22511 regr1lem 23243 alexsublem 23548 reconnlem1 24342 metnrmlem1a 24374 vitalilem4 25128 vitalilem5 25129 itg2gt0 25278 rollelem 25506 lhop1lem 25530 coefv0 25762 plyexmo 25826 lgamucov 26542 ppinprm 26656 chtnprm 26658 lgsdir 26835 lgseisenlem1 26878 2sqlem7 26927 2sqblem 26934 pntpbnd1 27089 madebdaylemlrcut 27393 dfon2lem8 34762 poimirlem25 36513 fdc 36613 ac6s6 37040 2atm 38398 llnmlplnN 38410 trlval3 39058 cdleme0moN 39096 cdleme18c 39164 qirropth 41646 aacllem 47848 |
Copyright terms: Public domain | W3C validator |