| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mt3d | Structured version Visualization version GIF version | ||
| Description: Modus tollens deduction. (Contributed by NM, 26-Mar-1995.) |
| Ref | Expression |
|---|---|
| mt3d.1 | ⊢ (𝜑 → ¬ 𝜒) |
| mt3d.2 | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| mt3d | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mt3d.1 | . 2 ⊢ (𝜑 → ¬ 𝜒) | |
| 2 | mt3d.2 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) | |
| 3 | 2 | con1d 145 | . 2 ⊢ (𝜑 → (¬ 𝜒 → 𝜓)) |
| 4 | 1, 3 | mpd 15 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: mt3i 149 olcnd 877 disjss3 5094 nnsuc 7824 poxp2 8083 frrlem14 8239 unxpdomlem2 9156 oismo 9451 cnfcom3lem 9618 rankelb 9739 fin33i 10282 isf34lem4 10290 canthp1lem2 10566 gchdju1 10569 pwfseqlem3 10573 inttsk 10687 r1tskina 10695 nqereu 10842 zbtwnre 12865 discr1 14164 seqcoll2 14390 bitsfzo 16364 bitsf1 16375 eucalglt 16514 4sqlem17 16891 4sqlem18 16892 ramubcl 16948 psgnunilem5 19391 odnncl 19442 gexnnod 19485 sylow1lem1 19495 torsubg 19751 prmcyg 19791 ablfacrplem 19964 pgpfac1lem2 19974 pgpfac1lem3a 19975 pgpfac1lem3 19976 xrsdsreclblem 21337 prmirredlem 21397 ppttop 22910 pptbas 22911 regr1lem 23642 alexsublem 23947 reconnlem1 24731 metnrmlem1a 24763 vitalilem4 25528 vitalilem5 25529 itg2gt0 25677 rollelem 25909 lhop1lem 25934 coefv0 26169 plyexmo 26237 lgamucov 26964 ppinprm 27078 chtnprm 27080 lgsdir 27259 lgseisenlem1 27302 2sqlem7 27351 2sqblem 27358 pntpbnd1 27513 madebdaylemlrcut 27831 dfon2lem8 35763 poimirlem25 37624 fdc 37724 ac6s6 38151 2atm 39506 llnmlplnN 39518 trlval3 40166 cdleme0moN 40204 cdleme18c 40272 qirropth 42881 aacllem 49787 |
| Copyright terms: Public domain | W3C validator |