| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mt3d | Structured version Visualization version GIF version | ||
| Description: Modus tollens deduction. (Contributed by NM, 26-Mar-1995.) |
| Ref | Expression |
|---|---|
| mt3d.1 | ⊢ (𝜑 → ¬ 𝜒) |
| mt3d.2 | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| mt3d | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mt3d.1 | . 2 ⊢ (𝜑 → ¬ 𝜒) | |
| 2 | mt3d.2 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) | |
| 3 | 2 | con1d 145 | . 2 ⊢ (𝜑 → (¬ 𝜒 → 𝜓)) |
| 4 | 1, 3 | mpd 15 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: mt3i 149 olcnd 877 disjss3 5092 nnsuc 7820 poxp2 8079 frrlem14 8235 unxpdomlem2 9148 oismo 9433 cnfcom3lem 9600 rankelb 9724 fin33i 10267 isf34lem4 10275 canthp1lem2 10551 gchdju1 10554 pwfseqlem3 10558 inttsk 10672 r1tskina 10680 nqereu 10827 zbtwnre 12846 discr1 14148 seqcoll2 14374 bitsfzo 16348 bitsf1 16359 eucalglt 16498 4sqlem17 16875 4sqlem18 16876 ramubcl 16932 psgnunilem5 19408 odnncl 19459 gexnnod 19502 sylow1lem1 19512 torsubg 19768 prmcyg 19808 ablfacrplem 19981 pgpfac1lem2 19991 pgpfac1lem3a 19992 pgpfac1lem3 19993 xrsdsreclblem 21351 prmirredlem 21411 ppttop 22923 pptbas 22924 regr1lem 23655 alexsublem 23960 reconnlem1 24743 metnrmlem1a 24775 vitalilem4 25540 vitalilem5 25541 itg2gt0 25689 rollelem 25921 lhop1lem 25946 coefv0 26181 plyexmo 26249 lgamucov 26976 ppinprm 27090 chtnprm 27092 lgsdir 27271 lgseisenlem1 27314 2sqlem7 27363 2sqblem 27370 pntpbnd1 27525 madebdaylemlrcut 27845 dfon2lem8 35853 poimirlem25 37705 fdc 37805 ac6s6 38232 2atm 39646 llnmlplnN 39658 trlval3 40306 cdleme0moN 40344 cdleme18c 40412 qirropth 43025 aacllem 49926 |
| Copyright terms: Public domain | W3C validator |