Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mt3d | Structured version Visualization version GIF version |
Description: Modus tollens deduction. (Contributed by NM, 26-Mar-1995.) |
Ref | Expression |
---|---|
mt3d.1 | ⊢ (𝜑 → ¬ 𝜒) |
mt3d.2 | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
Ref | Expression |
---|---|
mt3d | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mt3d.1 | . 2 ⊢ (𝜑 → ¬ 𝜒) | |
2 | mt3d.2 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) | |
3 | 2 | con1d 145 | . 2 ⊢ (𝜑 → (¬ 𝜒 → 𝜓)) |
4 | 1, 3 | mpd 15 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: mt3i 149 olcnd 874 ecase23d 1472 disjss3 5092 nnsuc 7799 frrlem14 8186 unxpdomlem2 9117 oismo 9398 cnfcom3lem 9561 rankelb 9682 fin33i 10227 isf34lem4 10235 canthp1lem2 10511 gchdju1 10514 pwfseqlem3 10518 inttsk 10632 r1tskina 10640 nqereu 10787 zbtwnre 12788 discr1 14056 seqcoll2 14280 bitsfzo 16242 bitsf1 16253 eucalglt 16388 4sqlem17 16760 4sqlem18 16761 ramubcl 16817 psgnunilem5 19199 odnncl 19250 gexnnod 19290 sylow1lem1 19300 torsubg 19551 prmcyg 19591 ablfacrplem 19764 pgpfac1lem2 19774 pgpfac1lem3a 19775 pgpfac1lem3 19776 xrsdsreclblem 20751 prmirredlem 20801 ppttop 22264 pptbas 22265 regr1lem 22997 alexsublem 23302 reconnlem1 24096 metnrmlem1a 24128 vitalilem4 24882 vitalilem5 24883 itg2gt0 25032 rollelem 25260 lhop1lem 25284 coefv0 25516 plyexmo 25580 lgamucov 26294 ppinprm 26408 chtnprm 26410 lgsdir 26587 lgseisenlem1 26630 2sqlem7 26679 2sqblem 26686 pntpbnd1 26841 dfon2lem8 34051 poxp2 34074 poxp3 34080 madebdaylemlrcut 34189 poimirlem25 35958 fdc 36059 ac6s6 36486 2atm 37846 llnmlplnN 37858 trlval3 38506 cdleme0moN 38544 cdleme18c 38612 qirropth 41043 aacllem 46923 |
Copyright terms: Public domain | W3C validator |