MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mt3i Structured version   Visualization version   GIF version

Theorem mt3i 149
Description: Modus tollens inference. (Contributed by NM, 26-Mar-1995.) (Proof shortened by Wolf Lammen, 15-Sep-2012.)
Hypotheses
Ref Expression
mt3i.1 ¬ 𝜒
mt3i.2 (𝜑 → (¬ 𝜓𝜒))
Assertion
Ref Expression
mt3i (𝜑𝜓)

Proof of Theorem mt3i
StepHypRef Expression
1 mt3i.1 . . 3 ¬ 𝜒
21a1i 11 . 2 (𝜑 → ¬ 𝜒)
3 mt3i.2 . 2 (𝜑 → (¬ 𝜓𝜒))
42, 3mt3d 148 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  biorfi  935  ordeleqon  7609  wofib  9234  harcard  9667  infpssALT  10000  zorn2lem4  10186  lt6abl  19411  gzrngunitlem  20575  bwth  22469  i1f0rn  24751  dfon2lem3  33667  slerec  33940  poimirlem30  35734
  Copyright terms: Public domain W3C validator