![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.24i | Structured version Visualization version GIF version |
Description: Inference associated with pm2.24 124. Its associated inference is pm2.24ii 120. (Contributed by NM, 20-Aug-2001.) |
Ref | Expression |
---|---|
pm2.24i.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
pm2.24i | ⊢ (¬ 𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.24i.1 | . . 3 ⊢ 𝜑 | |
2 | 1 | a1i 11 | . 2 ⊢ (¬ 𝜓 → 𝜑) |
3 | 2 | con1i 147 | 1 ⊢ (¬ 𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: orci 863 niabn 1019 ax13dgen1 2133 snopeqop 5506 prm23ge5 16747 pmtrdifellem4 19346 2irrexpq 26237 usgredg2v 28481 frgr3vlem1 29523 frgr3vlem2 29524 3vfriswmgrlem 29527 negsym1 35297 wl-moteq 36378 nnn1suc 41182 euoreqb 45807 line2ylem 47427 |
Copyright terms: Public domain | W3C validator |