![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.24i | Structured version Visualization version GIF version |
Description: Inference associated with pm2.24 124. Its associated inference is pm2.24ii 120. (Contributed by NM, 20-Aug-2001.) |
Ref | Expression |
---|---|
pm2.24i.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
pm2.24i | ⊢ (¬ 𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.24i.1 | . . 3 ⊢ 𝜑 | |
2 | 1 | a1i 11 | . 2 ⊢ (¬ 𝜓 → 𝜑) |
3 | 2 | con1i 147 | 1 ⊢ (¬ 𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: orci 864 niabn 1020 ax13dgen1 2134 snopeqop 5468 prm23ge5 16694 pmtrdifellem4 19268 2irrexpq 26101 usgredg2v 28217 frgr3vlem1 29259 frgr3vlem2 29260 3vfriswmgrlem 29263 negsym1 34918 wl-moteq 36002 nnn1suc 40811 euoreqb 45415 line2ylem 46911 |
Copyright terms: Public domain | W3C validator |