| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nsyl2 | Structured version Visualization version GIF version | ||
| Description: A negated syllogism inference. (Contributed by NM, 26-Jun-1994.) (Proof shortened by Wolf Lammen, 14-Nov-2023.) |
| Ref | Expression |
|---|---|
| nsyl2.1 | ⊢ (𝜑 → ¬ 𝜓) |
| nsyl2.2 | ⊢ (¬ 𝜒 → 𝜓) |
| Ref | Expression |
|---|---|
| nsyl2 | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nsyl2.1 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | nsyl2.2 | . . 3 ⊢ (¬ 𝜒 → 𝜓) | |
| 3 | 1, 2 | nsyl3 138 | . 2 ⊢ (¬ 𝜒 → ¬ 𝜑) |
| 4 | 3 | con4i 114 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: con1i 147 oprcl 4859 epelg 5532 elfvdm 6877 ovrcl 7410 elfvov1 7411 elfvov2 7412 tfi 7809 limom 7838 oaabs2 8590 ecexr 8653 elpmi 8796 elmapex 8798 pmresg 8820 pmsspw 8827 ixpssmap2g 8877 ixpssmapg 8878 resixpfo 8886 infensuc 9096 pm54.43lem 9929 alephnbtwn 10000 cfpwsdom 10513 elbasfv 17161 elbasov 17162 restsspw 17370 homarcl 17966 isipodrs 18472 grpidval 18564 efgrelexlema 19655 subcmn 19743 dvdsrval 20246 elocv 21553 mvrf1 21871 pf1rcl 22212 matrcl 22275 restrcl 23020 ssrest 23039 iscnp2 23102 isfcls 23872 isnghm 24587 dchrrcl 27127 sltval2 27544 sltres 27550 clwwlknnn 29935 hmdmadj 31842 indispconn 35194 cvmtop1 35220 cvmtop2 35221 mrsub0 35476 mrsubf 35477 mrsubccat 35478 mrsubcn 35479 mrsubco 35481 mrsubvrs 35482 msubf 35492 mclsrcl 35521 dfon2lem7 35750 funpartlem 35903 rankeq1o 36132 bj-brrelex12ALT 37028 bj-fvimacnv0 37247 atbase 39255 llnbase 39476 lplnbase 39501 lvolbase 39545 lhpbase 39965 mapco2g 42675 |
| Copyright terms: Public domain | W3C validator |