MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nsyl2 Structured version   Visualization version   GIF version

Theorem nsyl2 141
Description: A negated syllogism inference. (Contributed by NM, 26-Jun-1994.) (Proof shortened by Wolf Lammen, 14-Nov-2023.)
Hypotheses
Ref Expression
nsyl2.1 (𝜑 → ¬ 𝜓)
nsyl2.2 𝜒𝜓)
Assertion
Ref Expression
nsyl2 (𝜑𝜒)

Proof of Theorem nsyl2
StepHypRef Expression
1 nsyl2.1 . . 3 (𝜑 → ¬ 𝜓)
2 nsyl2.2 . . 3 𝜒𝜓)
31, 2nsyl3 138 . 2 𝜒 → ¬ 𝜑)
43con4i 114 1 (𝜑𝜒)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  con1i  147  oprcl  4900  epelg  5582  elfvdm  6929  ovrcl  7450  tfi  7842  limom  7871  oaabs2  8648  ecexr  8708  elpmi  8840  elmapex  8842  pmresg  8864  pmsspw  8871  ixpssmap2g  8921  ixpssmapg  8922  resixpfo  8930  infensuc  9155  pm54.43lem  9995  alephnbtwn  10066  cfpwsdom  10579  elbasfv  17150  elbasov  17151  restsspw  17377  homarcl  17978  isipodrs  18490  grpidval  18580  efgrelexlema  19617  subcmn  19705  dvdsrval  20175  elocv  21221  mvrf1  21545  pf1rcl  21868  matrcl  21912  restrcl  22661  ssrest  22680  iscnp2  22743  isfcls  23513  isnghm  24240  dchrrcl  26743  sltval2  27159  sltres  27165  clwwlknnn  29286  hmdmadj  31193  indispconn  34225  cvmtop1  34251  cvmtop2  34252  mrsub0  34507  mrsubf  34508  mrsubccat  34509  mrsubcn  34510  mrsubco  34512  mrsubvrs  34513  msubf  34523  mclsrcl  34552  dfon2lem7  34761  funpartlem  34914  rankeq1o  35143  bj-brrelex12ALT  35948  bj-fvimacnv0  36167  atbase  38159  llnbase  38380  lplnbase  38405  lvolbase  38449  lhpbase  38869  mapco2g  41452
  Copyright terms: Public domain W3C validator