| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nsyl2 | Structured version Visualization version GIF version | ||
| Description: A negated syllogism inference. (Contributed by NM, 26-Jun-1994.) (Proof shortened by Wolf Lammen, 14-Nov-2023.) |
| Ref | Expression |
|---|---|
| nsyl2.1 | ⊢ (𝜑 → ¬ 𝜓) |
| nsyl2.2 | ⊢ (¬ 𝜒 → 𝜓) |
| Ref | Expression |
|---|---|
| nsyl2 | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nsyl2.1 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | nsyl2.2 | . . 3 ⊢ (¬ 𝜒 → 𝜓) | |
| 3 | 1, 2 | nsyl3 138 | . 2 ⊢ (¬ 𝜒 → ¬ 𝜑) |
| 4 | 3 | con4i 114 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: con1i 147 oprcl 4852 epelg 5522 elfvdm 6865 ovrcl 7396 elfvov1 7397 elfvov2 7398 tfi 7792 limom 7821 oaabs2 8573 ecexr 8636 elpmi 8779 elmapex 8781 pmresg 8804 pmsspw 8811 ixpssmap2g 8861 ixpssmapg 8862 resixpfo 8870 infensuc 9079 pm54.43lem 9904 alephnbtwn 9973 cfpwsdom 10486 elbasfv 17133 elbasov 17134 restsspw 17342 homarcl 17943 isipodrs 18451 grpidval 18577 efgrelexlema 19669 subcmn 19757 dvdsrval 20288 elocv 21614 mvrf1 21932 pf1rcl 22284 matrcl 22347 restrcl 23092 ssrest 23111 iscnp2 23174 isfcls 23944 isnghm 24658 dchrrcl 27198 sltval2 27615 sltres 27621 clwwlknnn 30034 hmdmadj 31941 indispconn 35350 cvmtop1 35376 cvmtop2 35377 mrsub0 35632 mrsubf 35633 mrsubccat 35634 mrsubcn 35635 mrsubco 35637 mrsubvrs 35638 msubf 35648 mclsrcl 35677 dfon2lem7 35903 funpartlem 36058 rankeq1o 36287 bj-brrelex12ALT 37184 bj-fvimacnv0 37403 atbase 39461 llnbase 39681 lplnbase 39706 lvolbase 39750 lhpbase 40170 mapco2g 42871 |
| Copyright terms: Public domain | W3C validator |