| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nsyl2 | Structured version Visualization version GIF version | ||
| Description: A negated syllogism inference. (Contributed by NM, 26-Jun-1994.) (Proof shortened by Wolf Lammen, 14-Nov-2023.) |
| Ref | Expression |
|---|---|
| nsyl2.1 | ⊢ (𝜑 → ¬ 𝜓) |
| nsyl2.2 | ⊢ (¬ 𝜒 → 𝜓) |
| Ref | Expression |
|---|---|
| nsyl2 | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nsyl2.1 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | nsyl2.2 | . . 3 ⊢ (¬ 𝜒 → 𝜓) | |
| 3 | 1, 2 | nsyl3 138 | . 2 ⊢ (¬ 𝜒 → ¬ 𝜑) |
| 4 | 3 | con4i 114 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: con1i 147 oprcl 4866 epelg 5542 elfvdm 6898 ovrcl 7431 elfvov1 7432 elfvov2 7433 tfi 7832 limom 7861 oaabs2 8616 ecexr 8679 elpmi 8822 elmapex 8824 pmresg 8846 pmsspw 8853 ixpssmap2g 8903 ixpssmapg 8904 resixpfo 8912 infensuc 9125 pm54.43lem 9960 alephnbtwn 10031 cfpwsdom 10544 elbasfv 17192 elbasov 17193 restsspw 17401 homarcl 17997 isipodrs 18503 grpidval 18595 efgrelexlema 19686 subcmn 19774 dvdsrval 20277 elocv 21584 mvrf1 21902 pf1rcl 22243 matrcl 22306 restrcl 23051 ssrest 23070 iscnp2 23133 isfcls 23903 isnghm 24618 dchrrcl 27158 sltval2 27575 sltres 27581 clwwlknnn 29969 hmdmadj 31876 indispconn 35228 cvmtop1 35254 cvmtop2 35255 mrsub0 35510 mrsubf 35511 mrsubccat 35512 mrsubcn 35513 mrsubco 35515 mrsubvrs 35516 msubf 35526 mclsrcl 35555 dfon2lem7 35784 funpartlem 35937 rankeq1o 36166 bj-brrelex12ALT 37062 bj-fvimacnv0 37281 atbase 39289 llnbase 39510 lplnbase 39535 lvolbase 39579 lhpbase 39999 mapco2g 42709 |
| Copyright terms: Public domain | W3C validator |