![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nsyl2 | Structured version Visualization version GIF version |
Description: A negated syllogism inference. (Contributed by NM, 26-Jun-1994.) (Proof shortened by Wolf Lammen, 14-Nov-2023.) |
Ref | Expression |
---|---|
nsyl2.1 | ⊢ (𝜑 → ¬ 𝜓) |
nsyl2.2 | ⊢ (¬ 𝜒 → 𝜓) |
Ref | Expression |
---|---|
nsyl2 | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nsyl2.1 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
2 | nsyl2.2 | . . 3 ⊢ (¬ 𝜒 → 𝜓) | |
3 | 1, 2 | nsyl3 138 | . 2 ⊢ (¬ 𝜒 → ¬ 𝜑) |
4 | 3 | con4i 114 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: con1i 147 oprcl 4900 epelg 5582 elfvdm 6929 ovrcl 7454 tfi 7846 limom 7875 oaabs2 8652 ecexr 8712 elpmi 8844 elmapex 8846 pmresg 8868 pmsspw 8875 ixpssmap2g 8925 ixpssmapg 8926 resixpfo 8934 infensuc 9159 pm54.43lem 9999 alephnbtwn 10070 cfpwsdom 10583 elbasfv 17156 elbasov 17157 restsspw 17383 homarcl 17984 isipodrs 18496 grpidval 18588 efgrelexlema 19660 subcmn 19748 dvdsrval 20254 elocv 21442 mvrf1 21766 pf1rcl 22090 matrcl 22134 restrcl 22883 ssrest 22902 iscnp2 22965 isfcls 23735 isnghm 24462 dchrrcl 26977 sltval2 27393 sltres 27399 clwwlknnn 29551 hmdmadj 31458 indispconn 34521 cvmtop1 34547 cvmtop2 34548 mrsub0 34803 mrsubf 34804 mrsubccat 34805 mrsubcn 34806 mrsubco 34808 mrsubvrs 34809 msubf 34819 mclsrcl 34848 dfon2lem7 35063 funpartlem 35216 rankeq1o 35445 bj-brrelex12ALT 36253 bj-fvimacnv0 36472 atbase 38464 llnbase 38685 lplnbase 38710 lvolbase 38754 lhpbase 39174 mapco2g 41756 |
Copyright terms: Public domain | W3C validator |