![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nsyl2 | Structured version Visualization version GIF version |
Description: A negated syllogism inference. (Contributed by NM, 26-Jun-1994.) (Proof shortened by Wolf Lammen, 14-Nov-2023.) |
Ref | Expression |
---|---|
nsyl2.1 | ⊢ (𝜑 → ¬ 𝜓) |
nsyl2.2 | ⊢ (¬ 𝜒 → 𝜓) |
Ref | Expression |
---|---|
nsyl2 | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nsyl2.1 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
2 | nsyl2.2 | . . 3 ⊢ (¬ 𝜒 → 𝜓) | |
3 | 1, 2 | nsyl3 138 | . 2 ⊢ (¬ 𝜒 → ¬ 𝜑) |
4 | 3 | con4i 114 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: con1i 147 oprcl 4900 epelg 5582 elfvdm 6929 ovrcl 7450 tfi 7842 limom 7871 oaabs2 8648 ecexr 8708 elpmi 8840 elmapex 8842 pmresg 8864 pmsspw 8871 ixpssmap2g 8921 ixpssmapg 8922 resixpfo 8930 infensuc 9155 pm54.43lem 9995 alephnbtwn 10066 cfpwsdom 10579 elbasfv 17150 elbasov 17151 restsspw 17377 homarcl 17978 isipodrs 18490 grpidval 18580 efgrelexlema 19617 subcmn 19705 dvdsrval 20175 elocv 21221 mvrf1 21545 pf1rcl 21868 matrcl 21912 restrcl 22661 ssrest 22680 iscnp2 22743 isfcls 23513 isnghm 24240 dchrrcl 26743 sltval2 27159 sltres 27165 clwwlknnn 29286 hmdmadj 31193 indispconn 34225 cvmtop1 34251 cvmtop2 34252 mrsub0 34507 mrsubf 34508 mrsubccat 34509 mrsubcn 34510 mrsubco 34512 mrsubvrs 34513 msubf 34523 mclsrcl 34552 dfon2lem7 34761 funpartlem 34914 rankeq1o 35143 bj-brrelex12ALT 35948 bj-fvimacnv0 36167 atbase 38159 llnbase 38380 lplnbase 38405 lvolbase 38449 lhpbase 38869 mapco2g 41452 |
Copyright terms: Public domain | W3C validator |