| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nsyl2 | Structured version Visualization version GIF version | ||
| Description: A negated syllogism inference. (Contributed by NM, 26-Jun-1994.) (Proof shortened by Wolf Lammen, 14-Nov-2023.) |
| Ref | Expression |
|---|---|
| nsyl2.1 | ⊢ (𝜑 → ¬ 𝜓) |
| nsyl2.2 | ⊢ (¬ 𝜒 → 𝜓) |
| Ref | Expression |
|---|---|
| nsyl2 | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nsyl2.1 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | nsyl2.2 | . . 3 ⊢ (¬ 𝜒 → 𝜓) | |
| 3 | 1, 2 | nsyl3 138 | . 2 ⊢ (¬ 𝜒 → ¬ 𝜑) |
| 4 | 3 | con4i 114 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: con1i 147 oprcl 4863 epelg 5539 elfvdm 6895 ovrcl 7428 elfvov1 7429 elfvov2 7430 tfi 7829 limom 7858 oaabs2 8613 ecexr 8676 elpmi 8819 elmapex 8821 pmresg 8843 pmsspw 8850 ixpssmap2g 8900 ixpssmapg 8901 resixpfo 8909 infensuc 9119 pm54.43lem 9953 alephnbtwn 10024 cfpwsdom 10537 elbasfv 17185 elbasov 17186 restsspw 17394 homarcl 17990 isipodrs 18496 grpidval 18588 efgrelexlema 19679 subcmn 19767 dvdsrval 20270 elocv 21577 mvrf1 21895 pf1rcl 22236 matrcl 22299 restrcl 23044 ssrest 23063 iscnp2 23126 isfcls 23896 isnghm 24611 dchrrcl 27151 sltval2 27568 sltres 27574 clwwlknnn 29962 hmdmadj 31869 indispconn 35221 cvmtop1 35247 cvmtop2 35248 mrsub0 35503 mrsubf 35504 mrsubccat 35505 mrsubcn 35506 mrsubco 35508 mrsubvrs 35509 msubf 35519 mclsrcl 35548 dfon2lem7 35777 funpartlem 35930 rankeq1o 36159 bj-brrelex12ALT 37055 bj-fvimacnv0 37274 atbase 39282 llnbase 39503 lplnbase 39528 lvolbase 39572 lhpbase 39992 mapco2g 42702 |
| Copyright terms: Public domain | W3C validator |