Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nsyl2 | Structured version Visualization version GIF version |
Description: A negated syllogism inference. (Contributed by NM, 26-Jun-1994.) (Proof shortened by Wolf Lammen, 14-Nov-2023.) |
Ref | Expression |
---|---|
nsyl2.1 | ⊢ (𝜑 → ¬ 𝜓) |
nsyl2.2 | ⊢ (¬ 𝜒 → 𝜓) |
Ref | Expression |
---|---|
nsyl2 | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nsyl2.1 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
2 | nsyl2.2 | . . 3 ⊢ (¬ 𝜒 → 𝜓) | |
3 | 1, 2 | nsyl3 138 | . 2 ⊢ (¬ 𝜒 → ¬ 𝜑) |
4 | 3 | con4i 114 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: con1i 147 oprcl 4827 epelg 5487 elfvdm 6788 ovrcl 7296 tfi 7675 limom 7703 oaabs2 8439 ecexr 8461 elpmi 8592 elmapex 8594 pmresg 8616 pmsspw 8623 ixpssmap2g 8673 ixpssmapg 8674 resixpfo 8682 infensuc 8891 pm54.43lem 9689 alephnbtwn 9758 cfpwsdom 10271 elbasfv 16846 elbasov 16847 restsspw 17059 homarcl 17659 isipodrs 18170 grpidval 18260 efgrelexlema 19270 subcmn 19353 dvdsrval 19802 elocv 20785 mvrf1 21104 pf1rcl 21425 matrcl 21469 restrcl 22216 ssrest 22235 iscnp2 22298 isfcls 23068 isnghm 23793 dchrrcl 26293 clwwlknnn 28298 hmdmadj 30203 indispconn 33096 cvmtop1 33122 cvmtop2 33123 mrsub0 33378 mrsubf 33379 mrsubccat 33380 mrsubcn 33381 mrsubco 33383 mrsubvrs 33384 msubf 33394 mclsrcl 33423 dfon2lem7 33671 sltval2 33786 sltres 33792 funpartlem 34171 rankeq1o 34400 bj-brrelex12ALT 35165 bj-fvimacnv0 35384 atbase 37230 llnbase 37450 lplnbase 37475 lvolbase 37519 lhpbase 37939 mapco2g 40452 |
Copyright terms: Public domain | W3C validator |