![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nsyl2 | Structured version Visualization version GIF version |
Description: A negated syllogism inference. (Contributed by NM, 26-Jun-1994.) (Proof shortened by Wolf Lammen, 14-Nov-2023.) |
Ref | Expression |
---|---|
nsyl2.1 | ⊢ (𝜑 → ¬ 𝜓) |
nsyl2.2 | ⊢ (¬ 𝜒 → 𝜓) |
Ref | Expression |
---|---|
nsyl2 | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nsyl2.1 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
2 | nsyl2.2 | . . 3 ⊢ (¬ 𝜒 → 𝜓) | |
3 | 1, 2 | nsyl3 138 | . 2 ⊢ (¬ 𝜒 → ¬ 𝜑) |
4 | 3 | con4i 114 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: con1i 147 oprcl 4923 epelg 5600 elfvdm 6957 ovrcl 7489 elfvov1 7490 elfvov2 7491 tfi 7890 limom 7919 oaabs2 8705 ecexr 8768 elpmi 8904 elmapex 8906 pmresg 8928 pmsspw 8935 ixpssmap2g 8985 ixpssmapg 8986 resixpfo 8994 infensuc 9221 pm54.43lem 10069 alephnbtwn 10140 cfpwsdom 10653 elbasfv 17264 elbasov 17265 restsspw 17491 homarcl 18095 isipodrs 18607 grpidval 18699 efgrelexlema 19791 subcmn 19879 dvdsrval 20387 elocv 21709 mvrf1 22029 pf1rcl 22374 matrcl 22437 restrcl 23186 ssrest 23205 iscnp2 23268 isfcls 24038 isnghm 24765 dchrrcl 27302 sltval2 27719 sltres 27725 clwwlknnn 30065 hmdmadj 31972 indispconn 35202 cvmtop1 35228 cvmtop2 35229 mrsub0 35484 mrsubf 35485 mrsubccat 35486 mrsubcn 35487 mrsubco 35489 mrsubvrs 35490 msubf 35500 mclsrcl 35529 dfon2lem7 35753 funpartlem 35906 rankeq1o 36135 bj-brrelex12ALT 37033 bj-fvimacnv0 37252 atbase 39245 llnbase 39466 lplnbase 39491 lvolbase 39535 lhpbase 39955 mapco2g 42670 |
Copyright terms: Public domain | W3C validator |