| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nsyl2 | Structured version Visualization version GIF version | ||
| Description: A negated syllogism inference. (Contributed by NM, 26-Jun-1994.) (Proof shortened by Wolf Lammen, 14-Nov-2023.) |
| Ref | Expression |
|---|---|
| nsyl2.1 | ⊢ (𝜑 → ¬ 𝜓) |
| nsyl2.2 | ⊢ (¬ 𝜒 → 𝜓) |
| Ref | Expression |
|---|---|
| nsyl2 | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nsyl2.1 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | nsyl2.2 | . . 3 ⊢ (¬ 𝜒 → 𝜓) | |
| 3 | 1, 2 | nsyl3 138 | . 2 ⊢ (¬ 𝜒 → ¬ 𝜑) |
| 4 | 3 | con4i 114 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: con1i 147 oprcl 4846 epelg 5512 elfvdm 6851 ovrcl 7382 elfvov1 7383 elfvov2 7384 tfi 7778 limom 7807 oaabs2 8559 ecexr 8622 elpmi 8765 elmapex 8767 pmresg 8789 pmsspw 8796 ixpssmap2g 8846 ixpssmapg 8847 resixpfo 8855 infensuc 9063 pm54.43lem 9888 alephnbtwn 9957 cfpwsdom 10470 elbasfv 17121 elbasov 17122 restsspw 17330 homarcl 17930 isipodrs 18438 grpidval 18564 efgrelexlema 19656 subcmn 19744 dvdsrval 20274 elocv 21600 mvrf1 21918 pf1rcl 22259 matrcl 22322 restrcl 23067 ssrest 23086 iscnp2 23149 isfcls 23919 isnghm 24633 dchrrcl 27173 sltval2 27590 sltres 27596 clwwlknnn 30005 hmdmadj 31912 indispconn 35270 cvmtop1 35296 cvmtop2 35297 mrsub0 35552 mrsubf 35553 mrsubccat 35554 mrsubcn 35555 mrsubco 35557 mrsubvrs 35558 msubf 35568 mclsrcl 35597 dfon2lem7 35823 funpartlem 35976 rankeq1o 36205 bj-brrelex12ALT 37101 bj-fvimacnv0 37320 atbase 39328 llnbase 39548 lplnbase 39573 lvolbase 39617 lhpbase 40037 mapco2g 42747 |
| Copyright terms: Public domain | W3C validator |