| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nsyl2 | Structured version Visualization version GIF version | ||
| Description: A negated syllogism inference. (Contributed by NM, 26-Jun-1994.) (Proof shortened by Wolf Lammen, 14-Nov-2023.) |
| Ref | Expression |
|---|---|
| nsyl2.1 | ⊢ (𝜑 → ¬ 𝜓) |
| nsyl2.2 | ⊢ (¬ 𝜒 → 𝜓) |
| Ref | Expression |
|---|---|
| nsyl2 | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nsyl2.1 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | nsyl2.2 | . . 3 ⊢ (¬ 𝜒 → 𝜓) | |
| 3 | 1, 2 | nsyl3 138 | . 2 ⊢ (¬ 𝜒 → ¬ 𝜑) |
| 4 | 3 | con4i 114 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: con1i 147 oprcl 4853 epelg 5524 elfvdm 6861 ovrcl 7394 elfvov1 7395 elfvov2 7396 tfi 7793 limom 7822 oaabs2 8574 ecexr 8637 elpmi 8780 elmapex 8782 pmresg 8804 pmsspw 8811 ixpssmap2g 8861 ixpssmapg 8862 resixpfo 8870 infensuc 9079 pm54.43lem 9915 alephnbtwn 9984 cfpwsdom 10497 elbasfv 17145 elbasov 17146 restsspw 17354 homarcl 17954 isipodrs 18462 grpidval 18554 efgrelexlema 19647 subcmn 19735 dvdsrval 20265 elocv 21594 mvrf1 21912 pf1rcl 22253 matrcl 22316 restrcl 23061 ssrest 23080 iscnp2 23143 isfcls 23913 isnghm 24628 dchrrcl 27168 sltval2 27585 sltres 27591 clwwlknnn 29996 hmdmadj 31903 indispconn 35226 cvmtop1 35252 cvmtop2 35253 mrsub0 35508 mrsubf 35509 mrsubccat 35510 mrsubcn 35511 mrsubco 35513 mrsubvrs 35514 msubf 35524 mclsrcl 35553 dfon2lem7 35782 funpartlem 35935 rankeq1o 36164 bj-brrelex12ALT 37060 bj-fvimacnv0 37279 atbase 39287 llnbase 39508 lplnbase 39533 lvolbase 39577 lhpbase 39997 mapco2g 42707 |
| Copyright terms: Public domain | W3C validator |