Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nsyl2 | Structured version Visualization version GIF version |
Description: A negated syllogism inference. (Contributed by NM, 26-Jun-1994.) (Proof shortened by Wolf Lammen, 14-Nov-2023.) |
Ref | Expression |
---|---|
nsyl2.1 | ⊢ (𝜑 → ¬ 𝜓) |
nsyl2.2 | ⊢ (¬ 𝜒 → 𝜓) |
Ref | Expression |
---|---|
nsyl2 | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nsyl2.1 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
2 | nsyl2.2 | . . 3 ⊢ (¬ 𝜒 → 𝜓) | |
3 | 1, 2 | nsyl3 138 | . 2 ⊢ (¬ 𝜒 → ¬ 𝜑) |
4 | 3 | con4i 114 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: con1i 147 oprcl 4831 epelg 5497 elfvdm 6815 ovrcl 7325 tfi 7709 limom 7737 oaabs2 8488 ecexr 8512 elpmi 8643 elmapex 8645 pmresg 8667 pmsspw 8674 ixpssmap2g 8724 ixpssmapg 8725 resixpfo 8733 infensuc 8951 pm54.43lem 9767 alephnbtwn 9836 cfpwsdom 10349 elbasfv 16927 elbasov 16928 restsspw 17151 homarcl 17752 isipodrs 18264 grpidval 18354 efgrelexlema 19364 subcmn 19447 dvdsrval 19896 elocv 20882 mvrf1 21203 pf1rcl 21524 matrcl 21568 restrcl 22317 ssrest 22336 iscnp2 22399 isfcls 23169 isnghm 23896 dchrrcl 26397 clwwlknnn 28406 hmdmadj 30311 indispconn 33205 cvmtop1 33231 cvmtop2 33232 mrsub0 33487 mrsubf 33488 mrsubccat 33489 mrsubcn 33490 mrsubco 33492 mrsubvrs 33493 msubf 33503 mclsrcl 33532 dfon2lem7 33774 sltval2 33868 sltres 33874 funpartlem 34253 rankeq1o 34482 bj-brrelex12ALT 35247 bj-fvimacnv0 35466 atbase 37310 llnbase 37530 lplnbase 37555 lvolbase 37599 lhpbase 38019 mapco2g 40543 |
Copyright terms: Public domain | W3C validator |