| Mathbox for Jarvin Udandy |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > plvofpos | Structured version Visualization version GIF version | ||
| Description: rh is derivable because ONLY one of ch, th, ta, et is implied by mu. (Contributed by Jarvin Udandy, 11-Sep-2020.) |
| Ref | Expression |
|---|---|
| plvofpos.1 | ⊢ (𝜒 ↔ (¬ 𝜑 ∧ ¬ 𝜓)) |
| plvofpos.2 | ⊢ (𝜃 ↔ (¬ 𝜑 ∧ 𝜓)) |
| plvofpos.3 | ⊢ (𝜏 ↔ (𝜑 ∧ ¬ 𝜓)) |
| plvofpos.4 | ⊢ (𝜂 ↔ (𝜑 ∧ 𝜓)) |
| plvofpos.5 | ⊢ (𝜁 ↔ (((((¬ ((𝜇 → 𝜒) ∧ (𝜇 → 𝜃)) ∧ ¬ ((𝜇 → 𝜒) ∧ (𝜇 → 𝜏))) ∧ ¬ ((𝜇 → 𝜒) ∧ (𝜒 → 𝜂))) ∧ ¬ ((𝜇 → 𝜃) ∧ (𝜇 → 𝜏))) ∧ ¬ ((𝜇 → 𝜃) ∧ (𝜇 → 𝜂))) ∧ ¬ ((𝜇 → 𝜏) ∧ (𝜇 → 𝜂)))) |
| plvofpos.6 | ⊢ (𝜎 ↔ (((𝜇 → 𝜒) ∨ (𝜇 → 𝜃)) ∨ ((𝜇 → 𝜏) ∨ (𝜇 → 𝜂)))) |
| plvofpos.7 | ⊢ (𝜌 ↔ (𝜁 ∧ 𝜎)) |
| plvofpos.8 | ⊢ 𝜁 |
| plvofpos.9 | ⊢ 𝜎 |
| Ref | Expression |
|---|---|
| plvofpos | ⊢ 𝜌 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | plvofpos.8 | . . 3 ⊢ 𝜁 | |
| 2 | plvofpos.9 | . . 3 ⊢ 𝜎 | |
| 3 | 1, 2 | pm3.2i 470 | . 2 ⊢ (𝜁 ∧ 𝜎) |
| 4 | plvofpos.7 | . . . 4 ⊢ (𝜌 ↔ (𝜁 ∧ 𝜎)) | |
| 5 | 4 | bicomi 224 | . . 3 ⊢ ((𝜁 ∧ 𝜎) ↔ 𝜌) |
| 6 | 5 | biimpi 216 | . 2 ⊢ ((𝜁 ∧ 𝜎) → 𝜌) |
| 7 | 3, 6 | ax-mp 5 | 1 ⊢ 𝜌 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |