Mathbox for Jarvin Udandy |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > plvofpos | Structured version Visualization version GIF version |
Description: rh is derivable because ONLY one of ch, th, ta, et is implied by mu. (Contributed by Jarvin Udandy, 11-Sep-2020.) |
Ref | Expression |
---|---|
plvofpos.1 | ⊢ (𝜒 ↔ (¬ 𝜑 ∧ ¬ 𝜓)) |
plvofpos.2 | ⊢ (𝜃 ↔ (¬ 𝜑 ∧ 𝜓)) |
plvofpos.3 | ⊢ (𝜏 ↔ (𝜑 ∧ ¬ 𝜓)) |
plvofpos.4 | ⊢ (𝜂 ↔ (𝜑 ∧ 𝜓)) |
plvofpos.5 | ⊢ (𝜁 ↔ (((((¬ ((𝜇 → 𝜒) ∧ (𝜇 → 𝜃)) ∧ ¬ ((𝜇 → 𝜒) ∧ (𝜇 → 𝜏))) ∧ ¬ ((𝜇 → 𝜒) ∧ (𝜒 → 𝜂))) ∧ ¬ ((𝜇 → 𝜃) ∧ (𝜇 → 𝜏))) ∧ ¬ ((𝜇 → 𝜃) ∧ (𝜇 → 𝜂))) ∧ ¬ ((𝜇 → 𝜏) ∧ (𝜇 → 𝜂)))) |
plvofpos.6 | ⊢ (𝜎 ↔ (((𝜇 → 𝜒) ∨ (𝜇 → 𝜃)) ∨ ((𝜇 → 𝜏) ∨ (𝜇 → 𝜂)))) |
plvofpos.7 | ⊢ (𝜌 ↔ (𝜁 ∧ 𝜎)) |
plvofpos.8 | ⊢ 𝜁 |
plvofpos.9 | ⊢ 𝜎 |
Ref | Expression |
---|---|
plvofpos | ⊢ 𝜌 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | plvofpos.8 | . . 3 ⊢ 𝜁 | |
2 | plvofpos.9 | . . 3 ⊢ 𝜎 | |
3 | 1, 2 | pm3.2i 471 | . 2 ⊢ (𝜁 ∧ 𝜎) |
4 | plvofpos.7 | . . . 4 ⊢ (𝜌 ↔ (𝜁 ∧ 𝜎)) | |
5 | 4 | bicomi 223 | . . 3 ⊢ ((𝜁 ∧ 𝜎) ↔ 𝜌) |
6 | 5 | biimpi 215 | . 2 ⊢ ((𝜁 ∧ 𝜎) → 𝜌) |
7 | 3, 6 | ax-mp 5 | 1 ⊢ 𝜌 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |