Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pm11.12 Structured version   Visualization version   GIF version

Theorem pm11.12 41666
Description: Theorem *11.12 in [WhiteheadRussell] p. 159. (Contributed by Andrew Salmon, 17-Jun-2011.)
Assertion
Ref Expression
pm11.12 (∀𝑥𝑦(𝜑𝜓) → (𝜑 ∨ ∀𝑥𝑦𝜓))
Distinct variable groups:   𝜑,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)

Proof of Theorem pm11.12
StepHypRef Expression
1 pm10.12 41649 . . 3 (∀𝑦(𝜑𝜓) → (𝜑 ∨ ∀𝑦𝜓))
21alimi 1819 . 2 (∀𝑥𝑦(𝜑𝜓) → ∀𝑥(𝜑 ∨ ∀𝑦𝜓))
3 pm10.12 41649 . 2 (∀𝑥(𝜑 ∨ ∀𝑦𝜓) → (𝜑 ∨ ∀𝑥𝑦𝜓))
42, 3syl 17 1 (∀𝑥𝑦(𝜑𝜓) → (𝜑 ∨ ∀𝑥𝑦𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847  wal 1541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918
This theorem depends on definitions:  df-bi 210  df-or 848  df-ex 1788
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator