|   | Mathbox for Andrew Salmon | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pm11.12 | Structured version Visualization version GIF version | ||
| Description: Theorem *11.12 in [WhiteheadRussell] p. 159. (Contributed by Andrew Salmon, 17-Jun-2011.) | 
| Ref | Expression | 
|---|---|
| pm11.12 | ⊢ (∀𝑥∀𝑦(𝜑 ∨ 𝜓) → (𝜑 ∨ ∀𝑥∀𝑦𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pm10.12 44382 | . . 3 ⊢ (∀𝑦(𝜑 ∨ 𝜓) → (𝜑 ∨ ∀𝑦𝜓)) | |
| 2 | 1 | alimi 1810 | . 2 ⊢ (∀𝑥∀𝑦(𝜑 ∨ 𝜓) → ∀𝑥(𝜑 ∨ ∀𝑦𝜓)) | 
| 3 | pm10.12 44382 | . 2 ⊢ (∀𝑥(𝜑 ∨ ∀𝑦𝜓) → (𝜑 ∨ ∀𝑥∀𝑦𝜓)) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ (∀𝑥∀𝑦(𝜑 ∨ 𝜓) → (𝜑 ∨ ∀𝑥∀𝑦𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∨ wo 847 ∀wal 1537 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 | 
| This theorem depends on definitions: df-bi 207 df-or 848 df-ex 1779 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |