MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.26 Structured version   Visualization version   GIF version

Theorem pm2.26 937
Description: Theorem *2.26 of [WhiteheadRussell] p. 104. See pm2.27 42. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 23-Nov-2012.)
Assertion
Ref Expression
pm2.26 𝜑 ∨ ((𝜑𝜓) → 𝜓))

Proof of Theorem pm2.26
StepHypRef Expression
1 pm2.27 42 . 2 (𝜑 → ((𝜑𝜓) → 𝜓))
21imori 851 1 𝜑 ∨ ((𝜑𝜓) → 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 845
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator