Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imori | Structured version Visualization version GIF version |
Description: Infer disjunction from implication. (Contributed by NM, 12-Mar-2012.) |
Ref | Expression |
---|---|
imori.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
imori | ⊢ (¬ 𝜑 ∨ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imori.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | imor 851 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜑 ∨ 𝜓)) | |
3 | 1, 2 | mpbi 229 | 1 ⊢ (¬ 𝜑 ∨ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 845 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 846 |
This theorem is referenced by: pm2.1 895 pm2.26 938 rb-ax1 1752 fmla0disjsuc 33405 nrmo 34644 meran1 34645 meran2 34646 meran3 34647 tsim3 36334 tsor2 36350 tsor3 36351 spr0nelg 44986 |
Copyright terms: Public domain | W3C validator |