MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imori Structured version   Visualization version   GIF version

Theorem imori 851
Description: Infer disjunction from implication. (Contributed by NM, 12-Mar-2012.)
Hypothesis
Ref Expression
imori.1 (𝜑𝜓)
Assertion
Ref Expression
imori 𝜑𝜓)

Proof of Theorem imori
StepHypRef Expression
1 imori.1 . 2 (𝜑𝜓)
2 imor 850 . 2 ((𝜑𝜓) ↔ (¬ 𝜑𝜓))
31, 2mpbi 233 1 𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-or 845
This theorem is referenced by:  pm2.1  894  pm2.26  937  rb-ax1  1754  fmla0disjsuc  32758  nrmo  33871  meran1  33872  meran2  33873  meran3  33874  tsim3  35570  tsor2  35586  tsor3  35587  spr0nelg  43991
  Copyright terms: Public domain W3C validator