MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imori Structured version   Visualization version   GIF version

Theorem imori 852
Description: Infer disjunction from implication. (Contributed by NM, 12-Mar-2012.)
Hypothesis
Ref Expression
imori.1 (𝜑𝜓)
Assertion
Ref Expression
imori 𝜑𝜓)

Proof of Theorem imori
StepHypRef Expression
1 imori.1 . 2 (𝜑𝜓)
2 imor 851 . 2 ((𝜑𝜓) ↔ (¬ 𝜑𝜓))
31, 2mpbi 229 1 𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 846
This theorem is referenced by:  pm2.1  895  pm2.26  938  rb-ax1  1752  fmla0disjsuc  33405  nrmo  34644  meran1  34645  meran2  34646  meran3  34647  tsim3  36334  tsor2  36350  tsor3  36351  spr0nelg  44986
  Copyright terms: Public domain W3C validator