MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  biorfi Structured version   Visualization version   GIF version

Theorem biorfi 938
Description: The dual of biorf 936 is not biantr 805 but iba 527 (and ibar 528). So there should also be a "biorfr". (Note that these four statements can actually be strengthened to biconditionals.) (Contributed by BJ, 26-Oct-2019.)
Hypothesis
Ref Expression
biorfi.1 ¬ 𝜑
Assertion
Ref Expression
biorfi (𝜓 ↔ (𝜑𝜓))

Proof of Theorem biorfi
StepHypRef Expression
1 biorfi.1 . 2 ¬ 𝜑
2 biorf 936 . 2 𝜑 → (𝜓 ↔ (𝜑𝜓)))
31, 2ax-mp 5 1 (𝜓 ↔ (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wo 847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 848
This theorem is referenced by:  biorfri  939  opthprc  5731  frxp2  8152  bj-falor  36526  usgrexmpl2nb1  47937  usgrexmpl2nb2  47938  usgrexmpl2nb4  47940  usgrexmpl2nb5  47941  gpg5nbgrvtx03starlem1  47970  gpg5nbgrvtx03starlem2  47971  gpg5nbgrvtx03starlem3  47972  gpg5nbgrvtx13starlem1  47973  gpg5nbgrvtx13starlem2  47974  gpg5nbgrvtx13starlem3  47975
  Copyright terms: Public domain W3C validator