![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > biorfi | Structured version Visualization version GIF version |
Description: A wff is equivalent to its disjunction with falsehood. (Contributed by NM, 23-Mar-1995.) (Proof shortened by Wolf Lammen, 16-Jul-2021.) |
Ref | Expression |
---|---|
biorfi.1 | ⊢ ¬ 𝜑 |
Ref | Expression |
---|---|
biorfi | ⊢ (𝜓 ↔ (𝜓 ∨ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orc 866 | . 2 ⊢ (𝜓 → (𝜓 ∨ 𝜑)) | |
2 | biorfi.1 | . . 3 ⊢ ¬ 𝜑 | |
3 | pm2.53 850 | . . 3 ⊢ ((𝜓 ∨ 𝜑) → (¬ 𝜓 → 𝜑)) | |
4 | 2, 3 | mt3i 149 | . 2 ⊢ ((𝜓 ∨ 𝜑) → 𝜓) |
5 | 1, 4 | impbii 208 | 1 ⊢ (𝜓 ↔ (𝜓 ∨ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∨ wo 846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 847 |
This theorem is referenced by: pm4.43 1022 dn1 1057 indifdirOLD 4286 un0 4391 opthprc 5741 imadif 6633 frxp2 8130 xrsupss 13288 mdegleb 25582 difrab2 31738 ind1a 33017 poimirlem30 36518 ifpdfan2 42214 ifpdfan 42217 ifpnot 42221 ifpid2 42222 uneqsn 42776 |
Copyright terms: Public domain | W3C validator |