![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > biorfi | Structured version Visualization version GIF version |
Description: A wff is equivalent to its disjunction with falsehood. (Contributed by NM, 23-Mar-1995.) (Proof shortened by Wolf Lammen, 16-Jul-2021.) |
Ref | Expression |
---|---|
biorfi.1 | ⊢ ¬ 𝜑 |
Ref | Expression |
---|---|
biorfi | ⊢ (𝜓 ↔ (𝜓 ∨ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orc 865 | . 2 ⊢ (𝜓 → (𝜓 ∨ 𝜑)) | |
2 | biorfi.1 | . . 3 ⊢ ¬ 𝜑 | |
3 | pm2.53 849 | . . 3 ⊢ ((𝜓 ∨ 𝜑) → (¬ 𝜓 → 𝜑)) | |
4 | 2, 3 | mt3i 149 | . 2 ⊢ ((𝜓 ∨ 𝜑) → 𝜓) |
5 | 1, 4 | impbii 208 | 1 ⊢ (𝜓 ↔ (𝜓 ∨ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∨ wo 845 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 846 |
This theorem is referenced by: pm4.43 1021 dn1 1056 indifdirOLD 4285 un0 4390 opthprc 5740 imadif 6632 frxp2 8132 xrsupss 13292 mdegleb 25806 difrab2 31993 ind1a 33303 poimirlem30 36821 ifpdfan2 42516 ifpdfan 42519 ifpnot 42523 ifpid2 42524 uneqsn 43078 |
Copyright terms: Public domain | W3C validator |