| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biorfi | Structured version Visualization version GIF version | ||
| Description: The dual of biorf 936 is not biantr 805 but iba 527 (and ibar 528). So there should also be a "biorfr". (Note that these four statements can actually be strengthened to biconditionals.) (Contributed by BJ, 26-Oct-2019.) |
| Ref | Expression |
|---|---|
| biorfi.1 | ⊢ ¬ 𝜑 |
| Ref | Expression |
|---|---|
| biorfi | ⊢ (𝜓 ↔ (𝜑 ∨ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biorfi.1 | . 2 ⊢ ¬ 𝜑 | |
| 2 | biorf 936 | . 2 ⊢ (¬ 𝜑 → (𝜓 ↔ (𝜑 ∨ 𝜓))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜓 ↔ (𝜑 ∨ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: biorfri 939 opthprc 5731 frxp2 8152 bj-falor 36526 usgrexmpl2nb1 47937 usgrexmpl2nb2 47938 usgrexmpl2nb4 47940 usgrexmpl2nb5 47941 gpg5nbgrvtx03starlem1 47970 gpg5nbgrvtx03starlem2 47971 gpg5nbgrvtx03starlem3 47972 gpg5nbgrvtx13starlem1 47973 gpg5nbgrvtx13starlem2 47974 gpg5nbgrvtx13starlem3 47975 |
| Copyright terms: Public domain | W3C validator |