Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > biorfi | Structured version Visualization version GIF version |
Description: A wff is equivalent to its disjunction with falsehood. (Contributed by NM, 23-Mar-1995.) (Proof shortened by Wolf Lammen, 16-Jul-2021.) |
Ref | Expression |
---|---|
biorfi.1 | ⊢ ¬ 𝜑 |
Ref | Expression |
---|---|
biorfi | ⊢ (𝜓 ↔ (𝜓 ∨ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orc 867 | . 2 ⊢ (𝜓 → (𝜓 ∨ 𝜑)) | |
2 | biorfi.1 | . . 3 ⊢ ¬ 𝜑 | |
3 | pm2.53 851 | . . 3 ⊢ ((𝜓 ∨ 𝜑) → (¬ 𝜓 → 𝜑)) | |
4 | 2, 3 | mt3i 151 | . 2 ⊢ ((𝜓 ∨ 𝜑) → 𝜓) |
5 | 1, 4 | impbii 212 | 1 ⊢ (𝜓 ↔ (𝜓 ∨ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 209 ∨ wo 847 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-or 848 |
This theorem is referenced by: pm4.43 1023 dn1 1058 indifdirOLD 4200 un0 4305 opthprc 5613 imadif 6464 xrsupss 12899 mdegleb 24962 difrab2 30564 ind1a 31699 frxp2 33528 poimirlem30 35544 ifpdfan2 40755 ifpdfan 40758 ifpnot 40762 ifpid2 40763 uneqsn 41310 |
Copyright terms: Public domain | W3C validator |