![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > biorfi | Structured version Visualization version GIF version |
Description: The dual of biorf 935 is not biantr 805 but iba 527 (and ibar 528). So there should also be a "biorfr". (Note that these four statements can actually be strengthened to biconditionals.) (Contributed by BJ, 26-Oct-2019.) |
Ref | Expression |
---|---|
biorfi.1 | ⊢ ¬ 𝜑 |
Ref | Expression |
---|---|
biorfi | ⊢ (𝜓 ↔ (𝜑 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biorfi.1 | . 2 ⊢ ¬ 𝜑 | |
2 | biorf 935 | . 2 ⊢ (¬ 𝜑 → (𝜓 ↔ (𝜑 ∨ 𝜓))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜓 ↔ (𝜑 ∨ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∨ wo 846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-or 847 |
This theorem is referenced by: biorfri 938 opthprc 5764 frxp2 8185 bj-falor 36550 usgrexmpl2nb1 47847 usgrexmpl2nb2 47848 usgrexmpl2nb4 47850 usgrexmpl2nb5 47851 |
Copyright terms: Public domain | W3C validator |