MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  biorfi Structured version   Visualization version   GIF version

Theorem biorfi 933
Description: A wff is equivalent to its disjunction with falsehood. (Contributed by NM, 23-Mar-1995.) (Proof shortened by Wolf Lammen, 16-Jul-2021.)
Hypothesis
Ref Expression
biorfi.1 ¬ 𝜑
Assertion
Ref Expression
biorfi (𝜓 ↔ (𝜓𝜑))

Proof of Theorem biorfi
StepHypRef Expression
1 orc 862 . 2 (𝜓 → (𝜓𝜑))
2 biorfi.1 . . 3 ¬ 𝜑
3 pm2.53 846 . . 3 ((𝜓𝜑) → (¬ 𝜓𝜑))
42, 3mt3i 151 . 2 ((𝜓𝜑) → 𝜓)
51, 4impbii 210 1 (𝜓 ↔ (𝜓𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 207  wo 842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 208  df-or 843
This theorem is referenced by:  pm4.43  1017  dn1  1050  indifdir  4186  un0  4270  opthprc  5509  imadif  6315  xrsupss  12556  mdegleb  24345  difrab2  29949  ind1a  30891  poimirlem30  34474  ifpdfan2  39334  ifpdfan  39337  ifpnot  39341  ifpid2  39342  uneqsn  39879
  Copyright terms: Public domain W3C validator