MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  biorfi Structured version   Visualization version   GIF version

Theorem biorfi 937
Description: A wff is equivalent to its disjunction with falsehood. (Contributed by NM, 23-Mar-1995.) (Proof shortened by Wolf Lammen, 16-Jul-2021.)
Hypothesis
Ref Expression
biorfi.1 ¬ 𝜑
Assertion
Ref Expression
biorfi (𝜓 ↔ (𝜓𝜑))

Proof of Theorem biorfi
StepHypRef Expression
1 orc 865 . 2 (𝜓 → (𝜓𝜑))
2 biorfi.1 . . 3 ¬ 𝜑
3 pm2.53 849 . . 3 ((𝜓𝜑) → (¬ 𝜓𝜑))
42, 3mt3i 149 . 2 ((𝜓𝜑) → 𝜓)
51, 4impbii 208 1 (𝜓 ↔ (𝜓𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wo 845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 846
This theorem is referenced by:  pm4.43  1021  dn1  1056  indifdirOLD  4285  un0  4390  opthprc  5740  imadif  6632  frxp2  8132  xrsupss  13292  mdegleb  25806  difrab2  31993  ind1a  33303  poimirlem30  36821  ifpdfan2  42516  ifpdfan  42519  ifpnot  42523  ifpid2  42524  uneqsn  43078
  Copyright terms: Public domain W3C validator