MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  biorfi Structured version   Visualization version   GIF version

Theorem biorfi 938
Description: A wff is equivalent to its disjunction with falsehood. (Contributed by NM, 23-Mar-1995.) (Proof shortened by Wolf Lammen, 16-Jul-2021.)
Hypothesis
Ref Expression
biorfi.1 ¬ 𝜑
Assertion
Ref Expression
biorfi (𝜓 ↔ (𝜓𝜑))

Proof of Theorem biorfi
StepHypRef Expression
1 orc 866 . 2 (𝜓 → (𝜓𝜑))
2 biorfi.1 . . 3 ¬ 𝜑
3 pm2.53 850 . . 3 ((𝜓𝜑) → (¬ 𝜓𝜑))
42, 3mt3i 149 . 2 ((𝜓𝜑) → 𝜓)
51, 4impbii 208 1 (𝜓 ↔ (𝜓𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wo 846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 847
This theorem is referenced by:  pm4.43  1022  dn1  1057  indifdirOLD  4286  un0  4391  opthprc  5741  imadif  6633  frxp2  8130  xrsupss  13288  mdegleb  25582  difrab2  31738  ind1a  33017  poimirlem30  36518  ifpdfan2  42214  ifpdfan  42217  ifpnot  42221  ifpid2  42222  uneqsn  42776
  Copyright terms: Public domain W3C validator