![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > biorfi | Structured version Visualization version GIF version |
Description: A wff is equivalent to its disjunction with falsehood. (Contributed by NM, 23-Mar-1995.) (Proof shortened by Wolf Lammen, 16-Jul-2021.) |
Ref | Expression |
---|---|
biorfi.1 | ⊢ ¬ 𝜑 |
Ref | Expression |
---|---|
biorfi | ⊢ (𝜓 ↔ (𝜓 ∨ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orc 862 | . 2 ⊢ (𝜓 → (𝜓 ∨ 𝜑)) | |
2 | biorfi.1 | . . 3 ⊢ ¬ 𝜑 | |
3 | pm2.53 846 | . . 3 ⊢ ((𝜓 ∨ 𝜑) → (¬ 𝜓 → 𝜑)) | |
4 | 2, 3 | mt3i 151 | . 2 ⊢ ((𝜓 ∨ 𝜑) → 𝜓) |
5 | 1, 4 | impbii 210 | 1 ⊢ (𝜓 ↔ (𝜓 ∨ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 207 ∨ wo 842 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 208 df-or 843 |
This theorem is referenced by: pm4.43 1017 dn1 1050 indifdir 4186 un0 4270 opthprc 5509 imadif 6315 xrsupss 12556 mdegleb 24345 difrab2 29949 ind1a 30891 poimirlem30 34474 ifpdfan2 39334 ifpdfan 39337 ifpnot 39341 ifpid2 39342 uneqsn 39879 |
Copyright terms: Public domain | W3C validator |