MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  biorfi Structured version   Visualization version   GIF version

Theorem biorfi 935
Description: A wff is equivalent to its disjunction with falsehood. (Contributed by NM, 23-Mar-1995.) (Proof shortened by Wolf Lammen, 16-Jul-2021.)
Hypothesis
Ref Expression
biorfi.1 ¬ 𝜑
Assertion
Ref Expression
biorfi (𝜓 ↔ (𝜓𝜑))

Proof of Theorem biorfi
StepHypRef Expression
1 orc 863 . 2 (𝜓 → (𝜓𝜑))
2 biorfi.1 . . 3 ¬ 𝜑
3 pm2.53 847 . . 3 ((𝜓𝜑) → (¬ 𝜓𝜑))
42, 3mt3i 149 . 2 ((𝜓𝜑) → 𝜓)
51, 4impbii 208 1 (𝜓 ↔ (𝜓𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wo 843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 844
This theorem is referenced by:  pm4.43  1019  dn1  1054  indifdirOLD  4224  un0  4329  opthprc  5650  imadif  6514  xrsupss  13025  mdegleb  25210  difrab2  30824  ind1a  31966  frxp2  33770  poimirlem30  35786  ifpdfan2  41032  ifpdfan  41035  ifpnot  41039  ifpid2  41040  uneqsn  41586
  Copyright terms: Public domain W3C validator