MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.42 Structured version   Visualization version   GIF version

Theorem pm2.42 939
Description: Theorem *2.42 of [WhiteheadRussell] p. 106. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm2.42 ((¬ 𝜑 ∨ (𝜑𝜓)) → (𝜑𝜓))

Proof of Theorem pm2.42
StepHypRef Expression
1 pm2.21 123 . 2 𝜑 → (𝜑𝜓))
2 id 22 . 2 ((𝜑𝜓) → (𝜑𝜓))
31, 2jaoi 853 1 ((¬ 𝜑 ∨ (𝜑𝜓)) → (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 844
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator