Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > jaoi | Structured version Visualization version GIF version |
Description: Inference disjoining the antecedents of two implications. (Contributed by NM, 5-Apr-1994.) |
Ref | Expression |
---|---|
jaoi.1 | ⊢ (𝜑 → 𝜓) |
jaoi.2 | ⊢ (𝜒 → 𝜓) |
Ref | Expression |
---|---|
jaoi | ⊢ ((𝜑 ∨ 𝜒) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.53 850 | . . 3 ⊢ ((𝜑 ∨ 𝜒) → (¬ 𝜑 → 𝜒)) | |
2 | jaoi.2 | . . 3 ⊢ (𝜒 → 𝜓) | |
3 | 1, 2 | syl6 35 | . 2 ⊢ ((𝜑 ∨ 𝜒) → (¬ 𝜑 → 𝜓)) |
4 | jaoi.1 | . 2 ⊢ (𝜑 → 𝜓) | |
5 | 3, 4 | pm2.61d2 184 | 1 ⊢ ((𝜑 ∨ 𝜒) → 𝜓) |
Copyright terms: Public domain | W3C validator |