MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.64 Structured version   Visualization version   GIF version

Theorem pm2.64 939
Description: Theorem *2.64 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm2.64 ((𝜑𝜓) → ((𝜑 ∨ ¬ 𝜓) → 𝜑))

Proof of Theorem pm2.64
StepHypRef Expression
1 orel2 888 . . 3 𝜓 → ((𝜑𝜓) → 𝜑))
21jao1i 855 . 2 ((𝜑 ∨ ¬ 𝜓) → ((𝜑𝜓) → 𝜑))
32com12 32 1 ((𝜑𝜓) → ((𝜑 ∨ ¬ 𝜓) → 𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 845
This theorem is referenced by:  hirstL-ax3  44387
  Copyright terms: Public domain W3C validator